104 research outputs found
Res Medica, Spring 1967, Volume V, Number 3
EDITORIALNEUROLOGICAL EXAMINATION: JB Stanton, F.R.C.P.E., F.R.C.P., D.P.M. CIRCULATORY STABILITY: N.C.H. Stott, B.S.c., M.B.Ch.B. CHANGING CONCEPTS OF THE AETIOLOGY OF DIABETES MELLITUSDIAGNOSTIC PROBLEMPOLYCYTHAEMIA: A. W. DELLIPIANI, M.B., M.R.C.P.E. THE CONTRIBUTORSRESEARCH TOPIC: N.BAKERELECTRON MICROSCOPY IN GLOMERULONEPHRITIS: M. K. McDONALD, M.B., Ch.B., F.R.C.P.(Ed.)THE STRUCTURE AND FUNCTION OF IMMUNOGLOBULINS: J. A. HABESHAW, B.Sc., M.B., Ch.B. THE SOCIETYBOOK REVIEW
Medical Applications and Toxicities of Gallium Compounds
Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use
Prior mucosal exposure to heterologous cells alters the pathogenesis of cell-associated mucosal feline immunodeficiency virus challenge
<p>Abstract</p> <p>Background</p> <p>Several lines of research suggest that exposure to cellular material can alter the susceptibility to infection by HIV-1. Because sexual contact often includes exposure to cellular material, we hypothesized that repeated mucosal exposure to heterologous cells would induce an immune response that would alter the susceptibility to mucosal infection. Using the feline immunodeficiency virus (FIV) model of HIV-1 mucosal transmission, the cervicovaginal mucosa was exposed once weekly for 12 weeks to 5,000 heterologous cells or media (control) and then cats were vaginally challenged with cell-associated or cell-free FIV.</p> <p>Results</p> <p>Exposure to heterologous cells decreased the percentage of lymphocytes in the mucosal and systemic lymph nodes (LN) expressing L-selectin as well as the percentage of CD4+ CD25+ T cells. These shifts were associated with enhanced ex-vivo proliferative responses to heterologous cells. Following mucosal challenge with cell-associated, but not cell-free, FIV, proviral burden was reduced by 64% in cats previously exposed to heterologous cells as compared to media exposed controls.</p> <p>Conclusions</p> <p>The pathogenesis and/or the threshold for mucosal infection by infected cells (but not cell-free virus) can be modulated by mucosal exposure to uninfected heterologous cells.</p
- …