881 research outputs found
Topical photodynamic therapy using different porphyrin precursors leads to differences in vascular photosensitization and vascular damage in normal mouse skin
Different distributions of hexyl aminolevulinate (HAL), aminolevulinic acid (ALA) and methyl aminolevulinate (MAL) in the superficial vasculature are not well studied but they are hypothesized to play an important role in topical photodynamic therapy (PDT). The colocalization of fluorescent CD31 and protoporphyrin IX (PpIX) was calculated using confocal microscopy of mouse skin sections to investigate the vascular distribution after topical application. Vascular damage leads to disruption of the normal endothelial adherens junction complex, of which CD144 is an integral component. Therefore, normal CD31 combined with loss of normal fluorescent CD144 staining was visually scored to assess vascular damage. Both the vascular PpIX concentration and the vascular damage were highest for HAL, then ALA and then MAL. Vascular damage in MAL was not different from normal contralateral control skin. This pattern is consistent with literature data on vasoconstriction after PDT, and with the hypothesis that the vasculature plays a role in light fractionation that increases efficacy for HAL and ALA-PDT but not for MAL. These findings indicate that endothelial cells of superficial blood vessels synthesize biologically relevant PpIX concentrations, leading to vascular damage. Such vascular effects are expected to influence the oxygenation of tissue after PDT which can be important for treatment efficacy. The ability of the vasculature to synthesize PpIX and be damaged by PDT was compared between HAL, ALA and MAL in mouse skin using confocal microscopy and fluorescent CD31 and CD144 antibodies. Colocalization of CD31 and PpIX (left images) was calculated to measure endothelial PpIX synthesis. Vascular damage was scored as loss of normal CD144 staining (right images). Both PpIX synthesis and vascular damage were highest for HAL, then ALA, then MAL. This illustrates that superficial blood vessels synthesize biologically relevant amounts of PpIX. Vascular responses can limit oxygen supply during or after PDT and are expected to influence outcome
The Numerical Renormalization Group Method for correlated electrons
The Numerical Renormalization Group method (NRG) has been developed by Wilson
in the 1970's to investigate the Kondo problem. The NRG allows the
non-perturbative calculation of static and dynamic properties for a variety of
impurity models. In addition, this method has been recently generalized to
lattice models within the Dynamical Mean Field Theory. This paper gives a brief
historical overview of the development of the NRG and discusses its application
to the Hubbard model; in particular the results for the Mott metal-insulator
transition at low temperatures.Comment: 14 pages, 7 eps-figures include
Interplay of quantum magnetic and potential scattering around Zn or Ni impurity ions in superconducting cuprates
To describe the scattering of superconducting quasiparticles from
non-magnetic (Zn) or magnetic (Ni) impurities in optimally doped high T
cuprates, we propose an effective Anderson model Hamiltonian of a localized
electron hybridizing with -wave BCS type superconducting
quasiparticles with an attractive scalar potential at the impurity site. Due to
the strong local antiferromagnetic couplings between the original Cu ions and
their nearest neighbors, the localized electron in the Ni-doped materials is
assumed to be on the impurity sites, while in the Zn-doped materials the
localized electron is distributed over the four nearest neighbor sites of the
impurities with a dominant symmetric form of the wave function.
With Ni impurities, two resonant states are formed above the Fermi level in the
local density of states at the impurity site, while for Zn impurities a sharp
resonant peak below the Fermi level dominates in the local density of states at
the Zn site, accompanied by a small and broad resonant state above the Fermi
level mainly induced by the potential scattering. In both cases, there are no
Kondo screening effects. The local density of states and their spatial
distribution at the dominant resonant energy around the substituted impurities
are calculated for both cases, and they are in good agreement with the
experimental results of scanning tunneling microscopy in
BiSrCaCuO with Zn or Ni impurities, respectively.Comment: 24 pages, Revtex, 8 figures, submitted to Physical Review B for
publication. Sub-ject Class: Superconductivity; Strongly Correlated Electron
Specific Heat Study of the Magnetic Superconductor HoNi2B2C
The complex magnetic transitions and superconductivity of HoNi2B2C were
studied via the dependence of the heat capacity on temperature and in-plane
field angle. We provide an extended, comprehensive magnetic phase diagram for B
// [100] and B // [110] based on the thermodynamic measurements. Three magnetic
transitions and the superconducting transition were clearly observed. The 5.2 K
transition (T_{N}) shows a hysteresis with temperature, indicating the first
order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the
onset of the long-range ordering, displays a dramatic in-plane anisotropy:
T_{M} increases with increasing magnetic field for B // [100] while it
decreases with increasing field for B // [110]. The anomalous anisotropy in
T_{M} indicates that the transition is related to the a-axis spiral structure.
The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition,
i.e., a small in-plane anisotropy and scaling with Ising model. This last
transition is ascribed to the change from a^{*} dominant phase to c^{*}
dominant phase.Comment: 9 pages, 11 figure
Strange particle production in 158 and 40 GeV/ Pb-Pb and p-Be collisions
Results on strange particle production in Pb-Pb collisions at 158 and 40
GeV/ beam momentum from the NA57 experiment at CERN SPS are presented.
Particle yields and ratios are compared with those measured at RHIC.
Strangeness enhancements with respect to p-Be reactions at the same beam
momenta have been also measured: results about their dependence on centrality
and collision energy are reported and discussed.Comment: Contribution to the proceedings of the "Hot Quarks 2004" Conference,
July 18-24 2004, New Mexico, USA, submitted to Journal of Physics G 7 pages,
5 figure
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron
The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2]
for the proton and neutron have been determined from measurements of polarised
cross section asymmetries in deep inelastic scattering of 27.5 GeV
longitudinally polarised positrons from polarised 1H and 3He internal gas
targets. The data were collected in the region above the nucleon resonances in
the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the
proton the contribution to the generalised Gerasimov-Drell-Hearn integral was
found to be substantial and must be included for an accurate determination of
the full integral. Furthermore the data are consistent with a QCD
next-to-leading order fit based on previous deep inelastic scattering data.
Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte
Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction
Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H,
3He, and 14N targets has been studied by the HERMES experiment at squared
four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20
GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the
nuclear transparency, was found to decrease with increasing coherence length of
quark-antiquark fluctuations of the virtual photon. The data provide clear
evidence of the interaction of the quark- antiquark fluctuations with the
nuclear medium.Comment: RevTeX, 5 pages, 3 figure
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of spin correlation in ttbar production using dilepton final states
We measure the correlation between the spin of the top quark and the spin of
the anti-top quark in (ttbar -> W+ W- b bbar -> l+ nu b l- nubar bbar) final
states produced in ppbar collisions at a center of mass energy sqrt(s)=1.96
TeV, where l is an electron or muon. The data correspond to an integrated
luminosity of 5.4 fb-1 and were collected with the D0 detector at the Fermilab
Tevatron collider. The correlation is extracted from the angles of the two
leptons in the t and tbar rest frames, yielding a correlation strength C=
0.10^{+0.45}_{-0.45}, in agreement with the NLO QCD prediction within two
standard deviations, but also in agreement with the no correlation hypothesis.Comment: 10 pages, 3 figures, submitted to PL
- …