1,034 research outputs found
A Transport Analysis of the BEEM Spectroscopy of Au/Si Schottky Barriers
A systematic transport study of the ballistic electron emission microscopy
(BEEM) of Au/Si(100) and Au/Si(111) Schottky barriers for different thicknesses
of the metal layer and different temperatures is presented. It is shown that
the existing experimental data are compatible with a recently predicted
bandstructure-induced non-forward electron propagation through the Au(111)
layer.Comment: 5 pages, Latex-APS, 1 postscript figure,
http://www.icmm.csic.es/Pandres/pedro.htm. Phys. Stat. Sol. (b) (to appear),
HCIS-10 Conf, Berlin 199
Imaging the Effects of Oxygen Saturation Changes in Voluntary Apnea and Hyperventilation on Susceptibility-Weighted Imaging
BACKGROUND AND PURPOSE: Cerebrovascular oxygenation changes during respiratory challenges have clinically important implications for brain function, including cerebral autoregulation and the rate of brain metabolism. SWI is sensitive to venous oxygenation level by exploitation of the magnetic susceptibility of deoxygenated blood. We assessed cerebral venous blood oxygenation changes during simple voluntary breath-holding (apnea) and hyperventilation by use of SWI at 3T.
MATERIALS AND METHODS: We performed SWI scans (3T; acquisition time of 1 minute, 28 seconds; centered on the anterior commissure and the posterior commissure) on 10 healthy male volunteers during baseline breathing as well as during simple voluntary hyperventilation and apnea challenges. The hyperventilation and apnea tasks were separated by a 5-minute resting period. SWI venograms were generated, and the signal changes on SWI before and after the respiratory stress tasks were compared by means of a paired Student t test.
RESULTS: Changes in venous vasculature visibility caused by the respiratory challenges were directly visualized on the SWI venograms. The venogram segmentation results showed that voluntary apnea decreased the mean venous blood voxel number by 1.6% (P < .0001), and hyperventilation increased the mean venous blood voxel number by 2.7% (P < .0001). These results can be explained by blood CO2 changes secondary to the respiratory challenges, which can alter cerebrovascular tone and cerebral blood flow and ultimately affect venous oxygen levels.
CONCLUSIONS: These results highlight the sensitivity of SWI to simple and noninvasive respiratory challenges and its potential utility in assessing cerebral hemodynamics and vasomotor responses
Anisotropic Colossal Magnetoresistance Effects in Fe_{1-x}Cu_xCr_2S_4
A detailed study of the electronic transport and magnetic properties of
FeCuCrS () on single crystals is presented. The
resistivity is investigated for K in magnetic fields up to
14 Tesla and under hydrostatic pressure up to 16 kbar. In addition
magnetization and ferromagnetic resonance (FMR) measurements were performed.
FMR and magnetization data reveal a pronounced magnetic anisotropy, which
develops below the Curie temperature, , and increases strongly
towards lower temperatures. Increasing the Cu concentration reduces this
effect. At temperatures below 35 K the magnetoresistance, , exhibits a strong dependence on the direction of the
magnetic field, probably due to an enhanced anisotropy. Applying the field
along the hard axis leads to a change of sign and a strong increase of the
absolute value of the magnetoresistance. On the other hand the
magnetoresistance remains positive down to lower temperatures, exhibiting a
smeared out maximum with the magnetic field applied along the easy axis. The
results are discussed in the ionic picture using a triple-exchange model for
electron hopping as well as a half-metal utilizing a band picture.Comment: some typos correcte
Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra
We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin:deoxyhemoglobin ratios and T2* signal change during ‘oxygen challenge’ (OC, 5 mins 100% O2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n=5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n=5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronal morphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra
Is There Chronic Brain Damage in Retired NFL Players? Neuroradiology, Neuropsychology, and Neurology Examinations of 45 Retired Players
BACKGROUND: Neuropathology and surveys of retired National Football League (NFL) players suggest that chronic brain damage is a frequent result of a career in football. There is limited information on the neurological statuses of living retired players. This study aimed to fill the gap in knowledge by conducting in-depth neurological examinations of 30- to 60-year-old retired NFL players. HYPOTHESIS: In-depth neurological examinations of 30- to 60-year-old retired players are unlikely to detect objective clinical abnormalities in the majority of subjects. STUDY DESIGN: A day-long medical examination was conducted on 45 retired NFL players, including state-of-the-art magnetic resonance imaging (MRI; susceptibility weighted imaging [SWI], diffusion tensor imaging [DTI]), comprehensive neuropsychological and neurological examinations, interviews, blood tests, and APOE (apolipoprotein E) genotyping. LEVEL OF EVIDENCE: Level 3. METHODS: Participants\u27 histories focused on neurological and depression symptoms, exposure to football, and other factors that could affect brain function. The neurological examination included Mini-Mental State Examination (MMSE) evaluation of cognitive function and a comprehensive search for signs of dysarthria, pyramidal system dysfunction, extrapyramidal system dysfunction, and cerebellar dysfunction. The Beck Depression Inventory (BDI) and Patient Health Questionnaire (PHQ) measured depression. Neuropsychological tests included pen-and-paper and ImPACT evaluation of cognitive function. Anatomical examination SWI and DTI MRI searched for brain injuries. The results were statistically analyzed for associations with markers of exposure to football and related factors, such as body mass index (BMI), ethanol use, and APOE4 status. RESULTS: The retired players\u27 ages averaged 45.6 +/- 8.9 years (range, 30-60 years), and they had 6.8 +/- 3.2 years (maximum, 14 years) of NFL play. They reported 6.9 +/- 6.2 concussions (maximum, 25) in the NFL. The majority of retired players had normal clinical mental status and central nervous system (CNS) neurological examinations. Four players (9%) had microbleeds in brain parenchyma identified in SWI, and 3 (7%) had a large cavum septum pellucidum with brain atrophy. The number of concussions/dings was associated with abnormal results in SWI and DTI. Neuropsychological testing revealed isolated impairments in 11 players (24%), but none had dementia. Nine players (20%) endorsed symptoms of moderate or severe depression on the BDI and/or met criteria for depression on PHQ; however, none had dementia, dysarthria, parkinsonism, or cerebellar dysfunction. The number of football-related concussions was associated with isolated abnormalities on the clinical neurological examination, suggesting CNS dysfunction. The APOE4 allele was present in 38% of the players, a larger number than would be expected in the general male population (23%-26%). CONCLUSION: MRI lesions and neuropsychological impairments were found in some players; however, the majority of retired NFL players had no clinical signs of chronic brain damage. CLINICAL RELEVANCE: These results need to be reconciled with the prevailing view that a career in football frequently results in chronic brain damage
Validation of a hemodynamic model for the study of the cerebral venous outflow system using MR imaging and echo- Color doppler data
BACKGROUND AND PURPOSE: A comprehensive parameter model was developed to investigate correlations between cerebral hemodynamics and alterations in the extracranial venous circulation due to posture changes and/or extracranial venous obstruction (stenosis). The purpose of this work was to validate the simulation results by using MR imaging and echo-color Doppler experimental blood flow data in humans. MATERIALS AND METHODS: To validate the model outcomes, we used supine average arterial and venous extracerebral blood flow, obtained by using phase-contrast MR imaging from 49 individuals with stenosis in the acquisition plane at the level of the disc between the second and third vertebrae of the left internal jugular vein, 20 with stenosis in the acquisition plane at the level of the disc between the fifth and sixth vertebrae of the right internal jugular vein, and 38 healthy controls without stenosis. Average data from a second group of 10 healthy volunteers screened with an echo-color Doppler technique were used to evaluate flow variations due to posture change. RESULTS: There was excellent agreement between experimental and simulated supine flows. Every simulated CBF fell inside the standard error from the corresponding average experimental value, as well as most of the simulated extracerebral arterial flow (extracranial blood flow from the head and face, measured at the level of the disc between second and third vertebrae) and venous flows. Simulations of average jugular and vertebral blood flow variations due to a change of posture from supine to upright also matched the experimental data. CONCLUSIONS: The good agreement between simulated and experimental results means that the model can correctly reproduce the main factors affecting the extracranial circulation and could be used to study other types of stenotic conditions not represented by the experimental data
- …