1,533 research outputs found

    RĂ©ducteurs de bruit adaptatifs spatiaux et post-traitement pour codec MPEG-2

    Get PDF
    Jusqu'à présent, plusieurs techniques adaptatives spatiales pour la réduction de bruit additif ont été développées. Mais chaque algorithme peut seulement être efficace pour une classe d'images et il dépend beaucoup du niveau de bruit incorporé. Dans ce travail, nous proposons de nouvelles approches qui permettent d'obtenir une meilleure performance pour toutes les images et pour tous les niveaux de bruit. Les images traitées par nos algorithmes ont une meilleure qualité non seulement en mesure objective mais aussi subjective. Les algorithmes proposés sont fondés sur les statistiques locales des images, de l'énergie de bruit et de la segmentation. Grâce à la segmentation qui distingue les zones plates et les zones de détails dans l'image à traiter, l'utilisation du filtre adaptatif spatial devient plus précise et plus efficace, et introduit un meilleur résultat comparativement aux filtres existants. Puisque nos réducteurs de bruit sont capables d'enlever même le bruit dans les zones autour des contours, nous les utilisons pour développer un système de posttraitement pour améliorer la qualité visuelle des images vidéo compressées par le standard MPEG-2. Dans de telles régions, le bruit de moustique nuit beaucoup à la qualité visuelle. Plus spécifiquement, dans les images de MPEG-2, il y a trois types de bruits principaux: bruit de moustique, bruit de quantification et l'effet de bloc. Notre système commence par un filtre en losange, qui permet d'enlever une certaine quantité de bruit de quantification et d'effet de bloc. Ensuite, pour réduire le bruit de moustique, ce qui est très important, nous utilisons nos réducteurs de bruit. Enfin, un traitement de quatre sous-bandes est développé pour réduire l'effet de bloc

    Performance Investigation of High-Speed Train OFDM Systems under the Geometry-Based Channel Model

    Get PDF
    The high-speed of train (HST) in combination with the high carrier frequency of HST systems leads to the severe inter carrier interference (ICI) in the HST orthogonal frequency division multiplexing (HST-OFDM) systems. To avoid the complexity in OFDM receiver design for ICI eliminations, the OFDM system parameters such as symbol duration, signal bandwidth, and the number of subcarriers should be chosen appropriately. This paper aims to propose a process of HST-OFDM system performance investigation to determine these parameters in order to enhance spectral efficiency and meet a given quality-of-service (QoS) level. The signal-to-­interference-­plus-­noise ratio (SINR) has been used as a figure of merit to analyze the system performance instead of signal-to-noise ratio (SNR) as most of recent research studies. Firstly, using the non-stationary geometry-based stochastic HST channel model, the SINR of each subcarrier has been derived for different speeds of the train, signal bandwidths, and number of subcarriers. Consequently, the system capacity has been formulated as the sum of all the single channel capacity from each sub-carrier. The constraints on designing HST-OFDM system parameters have been thoughtfully analyzed using the obtained expressions of SINR and capacity. Finally, by analyzing the numerical results, the system parameters can be found for the design of HST-OFDM systems under different speeds of train. The proposed process can be used to provide hints to predict performance of HST communication systems before doing further high cost implementations as hardware designs

    Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review

    Get PDF
    Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard

    Advancements, Challenges, and Future Directions in Rainfall-Induced Landslide Prediction: A Comprehensive Review

    Get PDF
    Rainfall-induced landslides threaten lives and properties globally. To address this, researchers have developed various methods and models that forecast the likelihood and behavior of rainfall-induced landslides. These methodologies and models can be broadly classified into three categories: empirical, physical-based, and machine-learning approaches. However, these methods have limitations in terms of data availability, accuracy, and applicability. This paper reviews the current state-of-the-art of rainfall-induced landslide prediction methods, focusing on the methods, models, and challenges involved. The novelty of this study lies in its comprehensive analysis of existing prediction techniques and the identification of their limitations. By synthesizing a vast body of research, it highlights emerging trends and advancements, providing a holistic perspective on the subject matter. The analysis points out that future research opportunities lie in interdisciplinary collaborations, advanced data integration, remote sensing, climate change impact analysis, numerical modeling, real-time monitoring, and machine learning improvements. In conclusion, the prediction of rainfall-induced landslides is a complex and multifaceted challenge, and no single approach is universally superior. Integrating different methods and leveraging emerging technologies offer the best way forward for improving accuracy and reliability in landslide prediction, ultimately enhancing our ability to manage and mitigate this geohazard

    Photo-to-heat conversion of broadband metamaterial absorbers based on TiN nanoparticles under laser and solar illumination

    Full text link
    We theoretically investigate photothermal heating of ultra-flexible metamaterials, which are obtained by randomly mixing TiN nanoparticles in polydimethylsiloxane (PDMS). Due to the plasmonic properties of TiN nanoparticles, incident light is perfectly absorbed in a broadband range (300-3000 nm) to generate heat within these metamaterials. Under irradiation of an 808 nm near-infrared laser with different intensities, our predicted temperature rises as a function of time agree well with recent experimental data. For a given laser intensity, the temperature rise varies non-monotonically with concentration of TiN nanoparticles because the enhancement of thermal conductivity and absorbed energy as adding plasmonic nanostructures leads to opposite effects on the heating process. When the model is extended to solar heating, photothermal behaviors are qualitatively similar but the temperature increase is less than 13 KK. Our studies would provide good guidance for future experimental studies on the photo-to-heat conversion of broadband perfect absorbers.Comment: 8 pages, 7 figures, accepted for publications in Materials Today Communication

    Modelling the Doppler Power Spectrum of Non-Stationary Underwater Acoustic Channels Based on Doppler Measurements

    Get PDF
    This paper proposes a non-stationary time-continuous simulation model for wideband shallow underwater acoustic (UWA) channels based on measured Doppler power spectrums (DPSs). Measurement-based channel simulators are essential for the test, optimization, and performance analysis of UWA communication systems. The aim is to fit the DPS of the simulation model to that of the measured UWA channel. The performance of the designed UWA channel simulator is assessed by comparing the average Doppler shift and Doppler spread of the channel simulator with the corresponding quantities of the measured UWA channel. The results of the assessment show a good match between the statistical quantities of the UWA channel simulator and those of the real-world UWA channel.acceptedVersionnivĂĄ

    Field Equations in General Relativity with Internal Symmetry

    Get PDF
    The covariant wedge products of tetrads in General Relativity are introduced and related field equations are derived. The electromagnetic dual field is treated in detail and it is shown that this field is closely related with one component field, which is eigenfunction of d'Alembertian operator. The formalism is developed to incorporate internal symmetry

    Reduced Need of Infiltration Anesthesia Accompanied With Other Positive Outcomes in Diode Laser Application for Frenectomy in Children

    Get PDF
    Introduction: The abnormal maxillary labial frenum is common in children during the primary or mixed dentition stage. A conventional surgery for this abnormality usually requires infiltration anesthesia which leads to fear in children and consequent noncooperation during the surgery. The aim of present study was to evaluate the reduction in the need of infiltration anesthesia, intraoperative bleeding control and postoperative pain and wound healing in children when using the diode laser for abnormal labial frenum in the maxilla.Methods: The present study was carried out among 30 children attending the Hanoi Medical University, Vietnam. A Diode Laser with 810 nm wavelength and power of 0.8 W was used for frenectomy.Results: The proportion of procedures without any need of infiltration anesthesia was 70%, while 93.34% of children demonstrated positive and very positive behavior. Proportion of indolence on the first day after surgery was 83.3%. While 83.3% of children did not take any analgesics, not a single child complained of any pain 3 days after surgery.Conclusion: Our results indicated that the use of diode laser showed several benefits in maxillary labial frenectomy in children. These included reducing the need of infiltration anesthesia, increasing the children’s cooperation as well as decreasing the postoperative pain

    Antibiotic Resistance Profile and Methicillin-Resistant Encoding Genes of Staphylococcus aureus Strains Isolated from Bloodstream Infection Patients in Northern Vietnam

    Get PDF
    Background:  Evaluating the antibiotic susceptibility and resistance genes is essential in the clinical management of bloodstream infections (BSIs). Nevertheless, there are still limited studies in Northern Vietnam. AIM: This study aimed to determine the antibiotic resistance profile and methicillin-resistant encoding genes of Staphylococcus aureus (S. aureus) causing BSIs in Northern Vietnam. METHODS: The cross-sectional study was done from December 2012 to June 2014 in two tertiary hospitals in Northern Vietnam. Tests performed at the lab of the hospital. RESULTS:  In 43 S. aureus strains isolating, 53.5 % were MRSA. Distribution of gene for overall, MRSA, and MSSA strains were following: mecA gene (58.1 %; 95.7%, and 15%), femA gene (48.8%, 47.8%, and 50%), femB gene (88.4%, 82.6%, and 95%). Antibiotic resistance was highest in penicillin (100%), followed by erythromycin (65.1%) and clindamycin (60.5%). Several antibiotics were susceptible (100%), including vancomycin, tigecycline, linezolid, quinupristin/dalfopristin. Quinolone group was highly sensitive, include ciprofloxacin (83.7%), levofloxacin (86%) and moxifloxacin (86%). CONCLUSION:  In S. aureus causing BSIs, antibiotic resistance was higher in penicillin, erythromycin, and clindamycin. All strains were utterly susceptible to vancomycin, tigecycline, linezolid, quinupristin/dalfopristin

    Antibiotic Resistance Profile and Diversity of Subtypes Genes in Escherichia coli Causing Bloodstream Infection in Northern Vietnam

    Get PDF
    BACKGROUND: Evaluating the antibiotic susceptibility and resistance genes is essential in the clinical management of bloodstream infections (BSIs). But there are still limited studies in Northern Vietnam. AIM: The aim of the study was to determine the antibiotic resistance profile and characteristics of subtypes genes in Escherichia coli causing BSIs in Northern Vietnam. METHODS: The cross-sectional study was done in the period from December 2012 to June 2014 in two tertiary hospitals in Northern Vietnam. Tests were performed at the lab of the hospital. RESULTS: In 56 E. coli strains isolating 39.29 % produced ESBL. 100% of the isolates harbored blaTEM gene, but none of them had the blaPER gene. The prevalence of ESBL producers and ESBL non-producers in blaCTX-M gene was 81.82%, and 73.53%, in blaSHV gene was 18.18% and 35.29%. Sequencing results showed three blaTEM subtypes (blaTEM 1, 79, 82), four blaCTX-M subtypes (blaCTX-M-15, 73, 98, 161), and eight blaSHV subtypes (blaSHV 5, 7, 12, 15, 24, 33, 57, 77). Antibiotic resistance was higher in ampicillin (85.71%), trimethoprim/sulfamethoxazole (64.29%) and cephazolin (50%). Antibiotics were still highly susceptible including doripenem (96.43%), ertapenem (94.64%), amikacin (96.43%), and cefepime (89.29%). CONCLUSION: In Escherichia coli causing BSIs, antibiotic resistance was higher in ampicillin, trimethoprim/sulfamethoxazole and cephazolin. Antibiotics was highly susceptible including doripenem, ertapenem, amikacin, and cefepime
    • …
    corecore