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Abstract—This paper proposes a non-stationary time-
continuous simulation model for wideband shallow underwater
acoustic (UWA) channels based on measured Doppler power
spectrums (DPSs). Measurement-based channel simulators are
essential for the test, optimization, and performance analysis of
UWA communication systems. The aim is to fit the DPS of the
simulation model to that of the measured UWA channel. The
performance of the designed UWA channel simulator is assessed
by comparing the average Doppler shift and Doppler spread of
the channel simulator with the corresponding quantities of the
measured UWA channel. The results of the assessment show
a good match between the statistical quantities of the UWA
channel simulator and those of the real-world UWA channel.

Index terms — Measurement-based channel modelling, shallow
underwater acoustic channels, underwater acoustic communi-
cations, wideband channels, Doppler power spectrum, Doppler
spread.

I. INTRODUCTION

Underwater acoustic (UWA) communication systems have
been widely used in various applications in oceanography. For
the test, design, and performance analysis of UWA communi-
cation systems, the statistical properties of UWA channels in
terms of correlation functions, Doppler power spectrum (DPS),
and power delay profile (PDP) play an important role. For the
performance analysis of UWA communication systems, one
usually resorts to computer simulations, which provide a cost-
effective and powerful tool to assess the system performance.
They can also be used to confirm the correctness of theoretical
results obtained analytically.

While many researchers are concerned with the PDPs, the
DPS have been less developed for UWA channels [1], [2].
This motivates us to analyze and model the DPS of UWA
channels based on Doppler measurements. The Doppler effect
in UWA channels is more severe than that in mobile radio
channels due to the low speed of sound (1500 m/s), large
Doppler frequency shifts with respect to the carrier frequency,
and the time-variant characteristics of the surface motion [3].
Therefore, the Doppler effect is indeed a critical issue that
affects the performance of UWA communication systems.

In the absence of a standardized model for UWA chan-
nels, measurement-based channel modelling is an alternative
approach to model the behaviour of real-world UWA channels.
However, it is a scenario-specific approach. There are a large

number of studies related to the modelling of measurement-
based UWA channels. For instance, the distribution of a UWA
channel envelope has been reported in [4], [5] to match the
Rayleigh distribution, while in [6], [7], it has been shown that
the envelope follows the Rice distribution. In addition, the
channel envelope may also follow the lognormal distribution as
claimed in [8]. These controversial studies show that a realistic
UWA channel simulator is necessarily required.

Under the standard assumption of wide-sense stationary
uncorrelated scattering (WSSUS), the DPS of UWA channels
can be computed by taking the Fourier transform of the
autocorrelation function (ACF) of the received signal [9], [10].
However, the WSSUS assumption may not be valid due to the
non-stationary behaviour of UWA channels [1].

This paper presents a non-stationary time-continuous simu-
lation model for UWA channels with given DPS obtained from
measurements. To obtain the experimental data, we launched
a campaign to measure a shallow UWA channel, which was
used as a starting point for computing the DPS. The proposed
channel simulator has been developed such that its statistical
properties (average Doppler shift and Doppler spread) match
as close as possible those of the measured real-world channel.
For the design of measurement-based channel simulators, we
need to determine the model parameters, including the path
gains, Doppler frequencies, and phase shifts. Our numerical
results show that a good fitting between the measured channel
and the simulation model can be achieved with respect to the
DPS, average Doppler shifts and Doppler spread.

The rest of this paper is organized as follows. In Section II,
the time-continuous channel simulation model is presented.
Section III describes the measurement scenario. The numerical
results are illustrated in Section IV. Finally, the conclusions
are drawn in Section V.

II. NON-STATIONARY TIME-CONTINUOUS CHANNEL
SIMULATION MODEL

In this section, we develop a non-stationary time-continuous
simulation model for UWA channels using a given DPS. First,
the given DPS is presented and then the complex channel gain
of the channel simulator is proposed.
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A. Given DPS

In the measurement, we assume that the received signal has
been stored after each snapshot interval. It is also assumed
that the UWA channel is quasi-stationary during each snapshot
interval. For the kth snapshot interval of duration Ts, the DPS
Š
(k)
yy (f, t) of the measured UWA channel can be computed as

Š(k)
yy (f, t) =

N∑
n=1

[
c(k)n

]2
δ(f − f (k)n ) (1)

for t ∈ [tk, tk+1) and k = 0, 1, 2, . . . ,K−1. The time interval
tk is defined as tk = t0+kTs and t0 equals Ts/2. The parame-
ter K denotes the number of snapshots intervals, and thus, the
measurement duration Tmes is determined by Tmes = KTs. The
parameters c(k)n and f

(k)
n denote, respectively, the path gain

and Doppler shift of the nth received multipath component
for the kth snapshot. The quantity N stands for the number
of multipath components in each snapshot. The proof of (1)
is provided in the Appendix.

B. Complex Channel Gain

In this paper, we adopt a channel simulation model with
complex channel gain µ̃(t) based on a sum-of-cisoids uncor-
related scattering (SOCUS) model [11], which is an appro-
priate channel model for a large class of wideband measured
channels under non-isotropic scattering conditions. However,
unlike the conventional SOCUS model, the channel gains
are time-variant. In the proposed simulation model, for each
Doppler shift fn, we compute time-continuous gains c(k)n (t)
between two consecutive snapshot intervals. The complex
channel gain µ̃(t) of the non-stationary simulation model can
be obtained by µ̃(t) =

∑K−1
k=0 µ̃(k)(t), where the kth complex

channel gain µ̃(k)(t) is given by

µ̃(k)(t) =

N ′∑
n=1

c(k)n (t)ej(2πfnt+θn) (2)

for t ∈ [tk, tk+1), where the Doppler frequencies fn are
obtained from the measurement data, and the phase shifts θn
are unknown and will consequently be modelled as random
variables with uniform distribution over (0, 2π]. The parameter
N ′ denotes the number of cisoids in the simulation model.
The time-variant path gain c

(k)
n (t) corresponds to the kth

snapshot and interpolates the values between two consecutive
and constant gains c(k)n and c

(k+1)
n , which can be computed

by [12, Eq. (6.207)]

c(k)n (t) =
c
(k)
n + c

(k+1)
n

2
+
c
(k)
n − c(k+1)

n

2
cos

(
π(t− tk)

Ts

)
(3)

for t ∈ [tk, tk+1). Note that if t = tk, then c(k)n (t) = c
(k)
n and

if t = tk+1, then c(k)n (t) = c
(k+1)
n .

C. The Spectrogram of the Simulation Model

The spectrogram S̃yy(f, t) of the simulation model can be
obtained by applying the concept of the spectrogram presented
in [13]. The spectrogram has been widely used for analyzing

time-variant signals and both stationary and non-stationary
processes. In addition, the spectrogram provides variation of
the spectral density of a signal (or stochastic process) over
time. The spectrogram of a time-varying signal is computed
by dividing the signal into overlapping shorter signals and
then computing the squared absolute value of the Fourier
transform of the short-time signal. However, the spectrogram
suffers from a term named cross-term, which is time-variant
and depends on the phases. More detailed analysis of the
spectrogram can be found in [13]. Let h(t) denote an even
and positive window function of the form

h(t) =
1√
T

rect
(
t

T

)
=

{
1√
T
, if − T

2 ≤ t ≤
T
2 ,

0, otherwise,
(4)

where the parameter T stands for the window length and
the function rect(·) is the rectangular function. The energy of
the window function h(t) has been normalized to unity, i.e.,∫∞
−∞ h2(t)dt = 1. The short-time Fourier transform (STFT)
Ỹ (f, t) of ỹ(t′, t) = µ̃(t′)h(t′ − t) is given by (5) (see the
bottom of the next page) in which the function sinc(·) is the
sinc function and the symbol (∗) denotes the convolutional
operator. Note that the window function h(t′) is centred at
time t. The spectrogram S̃yy(f, t) of the simulation model
is finally obtained as (6) (see the bottom of the next page).
The spectrogram S̃yy(f, t) in (6) reduces to [13, Eq. (11)] if
T →∞ and channel gains are constant, i.e., c(k)n (t) = cn.

D. Characteristic Quantities

In analogy to [12, Eqs. (7.155) and (7.156)], the time-
variant average Doppler shift B̃(1)

yy (t) and the time-variant
delay spread B̃

(2)
yy (t) of the SOCUS simulation model are

defined by the first moment of the spectrogram S̃yy(f, t)
and the square root of the second central moment of the
spectrogram S̃yy(f, t) as

B̃(1)
yy (t) =

∞∫
−∞

f S̃yy(f, t) df

∞∫
−∞

S̃yy(f, t) df

(7)

and

B̃(2)
yy (t) =

√√√√√√√√
∞∫
−∞

f2 S̃yy(f, t) df

∞∫
−∞

S̃yy(f, t) df

−
(
B̃

(1)
yy (t)

)2
(8)

respectively. Analogously, the time-variant average Doppler
shift B̌(1)

yy (t) and the time-variant delay spread B̌(2)
yy (t) of the

measured UWA channel can be computed by

B̌(1)
yy (t) =

∑N
n=1 f

(k)
n

[
c
(k)
n

]2
∑N
n=1

[
c
(k)
n

]2 (9)



and

B̌(2)
yy (t) =

√√√√√√
∑N
n=1

[
f
(k)
n c

(k)
n

]2
∑N
n=1

[
c
(k)
n

]2 −
(
B̌

(1)
yy (t)

)2
(10)

respectively for t ∈ [tk, tk+1). To study the influence of the
parameter N ′ on the performance of the channel simulator,
two error functions E(1)(N ′) and E(2)(N ′) are considered as

E(1)(N ′) =
1

Tmes

Tmes∫
0

∣∣∣B̃(1)
yy (t)− B̌(1)

yy (t)
∣∣∣2 dt (11)

and

E(2)(N ′) =
1

Tmes

Tmes∫
0

∣∣∣B̃(2)
yy (t)− B̌(2)

yy (t)
∣∣∣2 dt (12)

respectively.

III. MEASUREMENT SCENARIO

To obtain the experimental data, we launched a measure-
ment campaign in West Lake, Hanoi, Vietnam, in June 2016.
The measured data was used as a starting point for computing
the time-variant DPS Šyy(f, t) of UWA channel. The water
depth was about 2.5 m and the transducer and hydrophone
were secured at a depth of 1.5 m. The single-input single-
output (SISO) channel measurements were performed at a
carrier frequency of 12 kHz and a signal bandwidth of 4 kHz.
The measurement data was collected for two different sce-
narios. In the first measurement scenario, the initial distance
between the receiver and the transmitter was 50 m. Then, the
receiver moved away from the fixed transmitter at a speed of
about vR = 0.5 m/s and stopped after travelling 50 m. In the
second measurement scenario, the receiver was 100 m away
from the fixed transmitter. Then, the receiver moved towards
the transmitter at a speed of about vR = 0.5 m/s and stopped
after passing 50 m.

IV. NUMERICAL RESULTS

In this section, we analyse the statistical properties of
the measured UWA channel. Our aim is to develop a non-
stationary channel simulation model based on measured DPSs.
The performance of the channel simulator has been analyzed
by comparing its statistical quantities, including the time-
variant average Doppler shift and time-variant Doppler spread,
with the corresponding statistical quantities of the measured
UWA channel.

The UWA channel has been measured by K = 20 snapshots
for the first scenario with a snapshot interval of Ts = 5 s.
Hence, the measurement duration Tmes of the first scenario
was 100 s. In the second scenario, the channel was measured
by K = 24 snapshots, each one again with the snapshot
interval of Ts = 5 s, i.e., the measurement duration was equal
to Tmes = 120 s.

From the results shown in Figs. 1 and 2, we can conclude
that by increasing the number of cisoids N ′, the error functions
in (11) and (12) decrease. As a trade-off between complexity
and accuracy, the number of cisoids N ′ in the simulation setup
has been set to 80 . The window size T of the spectrogram
has been set to 5 s.

Fig. 3 shows the obtained DPS Šµµ(f, t) =∑K−1
k=0 Š

(k)
µµ (f, t) of the first scenario, where negative

Doppler frequencies can be observed as expected, because
the receiver moves away from the transmitter. As can be
seen in this figure, there are strong variations of the gains
c
(k)
n from one snapshot interval to the next. To address this

non-stationary behavior, as stated in Sect. II-B, we propose
time-continuous channel gains for the simulation model.
Fig. 4 shows the spectrogram S̃µµ(f, t) of the non-stationary
time-continuous simulation model for the first scenario, where
a similar trend as for the DPS Šµµ(f, t) of the measured
UWA channel can be observed. Similar results have been
achieved by comparing the DPS of the measured UWA
channel and the spectrogram of the simulation model of the
second scenario, which have been presented in Figs. 5 and 4,
respectively, where positive Doppler shifts can be observed.

Ỹ (f, t) =

∞∫
−∞

ỹ(t′, t)e−j2πft
′
dt′=

∞∫
−∞

µ̃(t′)h(t′ − t)e−j2πft
′
dt′=

1√
T

∞∫
−∞

K−1∑
k=0

N ′∑
n=1

c(k)n (t′)e−j[2π(f−fn)t
′−θn]rect

(
t′ − t
T

)
dt′

=
√
T

K−1∑
k=0

N ′∑
n=1

c(k)n (f) ∗ sinc[(f − fn)T ] e−j[2π(f−fn)t−θn] (5)

S̃yy(f, t) =
∣∣∣Ỹ (f, t)

∣∣∣2 = T

K−1∑
k=0

N ′∑
n=1

[
c(k)n (f)

]2
∗ sinc2[(f − fn)T ]

+ T

K−1∑
k=0

N ′∑
n=1

K−1∑
l=1
l 6=k

N ′∑
m=1

c(k)n (f)c(l)m (f) ∗ sinc[(f − fn)T ] · sinc[(f − fm)T ] e−j[2π(fn−fm)t+θn−θm] (6)
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Fig. 1. Evaluation of the error function E(1)(N ′) in (11) as a function of
the number of cisoids N ′.
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Fig. 2. Evaluation of the error function E(2)(N ′) in (12) as a function of
the number of cisoids N ′.
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Fig. 3. Time-variant DPS Šµµ(f, t) of the measured UWA channel (first
scenario).
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Fig. 4. The spectrogram S̃µµ(f, t) of the simulation model (first scenario).
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Fig. 5. Time-variant DPS Šµµ(f, t) of the measured UWA channel (second
scenario).

Fig. 6. The spectrogram S̃µµ(f, t) of the simulation model (second scenario).
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Fig. 7. Time-variant average Doppler shift (first scenario).
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Fig. 8. Time-variant average Doppler shift (second scenario).

The results of the assessment show an excellent match
between the measured UWA channel and the corresponding
simulation model with respect to the time-variant average
Doppler shifts B

(1)
yy (t) obtained for the first scenario and

second scenario, as illustrated in Figs. 7 and 8, respectively. As
can be seen, unlike stationary channels, the average Doppler
shifts change considerably during the measurement duration
Tmes.

Fig. 9 shows a comparison between the time-variant
Doppler spread B̃

(2)
yy (t) of the simulation model and that of

the measured UWA channel of the first scenario according to
(8) and (10), respectively. With reference to this figure, the
time-variant Doppler spread of the simulation model follows
closely that of the measured UWA channel.

We also analysed the time-variant Doppler spread of the
UWA channel for the second scenario as depicted in Fig. 10.
As can be seen, a good match has been achieved between the
measured UWA channel and the simulation model.

V. CONCLUSION

In this paper, we have presented a non-stationary time-
continuous simulation model for UWA channels by means of
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Fig. 9. Time-variant Doppler spread (first scenario).
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Fig. 10. Time-variant Doppler spread (second scenario).

measured DPS. We have used an approach to compute time-
continuous path gains for the simulation model. The DPS,
time-variant average Doppler shift, and time-variant Doppler
spread of the channel simulator have been matched to the
corresponding quantities of the measured UWA channel. It has
been shown that the new channel model provides an excellent
fit to measured UWA channels.

APPENDIX

This Appendix presents the proof of (1). The UWA channel
is excited by the signal x(t) described by an amplitude A, a
carrier frequency fc, and a phase θ as

x(t) = Ae j(2πfct+θ). (13)

We assume that the UWA channel is quasi-stationary during
each snapshot, and its time-variant channel impulse response
ȟ(k)(τ ′, t) can be presented by

ȟ(k)(τ ′, t) =

N∑
n=1

c(k)n e j(2πf
(k)
n t+θn)δ(τ ′ − τ ′n) (14)

for k = 0, 1, . . . ,K − 1. The parameter τ ′n stands for the
propagation delay of the nth received component. The received



signal y(k)(t) of the kth snapshot can be computed as

y(k)(t) =

∞∫
0

x(t− τ ′)ȟ(k)(τ ′, t)dτ ′

= A

∞∫
0

e j[2πfc(t−τ
′)+θ]

×
N∑
n=1

c(k)n e j(2πf
(k)
n t+θn)δ(τ ′ − τ ′n)dτ ′

= Ae j(2πfct+θ)
N∑
n=1

c(k)n e j(2πf
(k)
n t+θn)

×
∞∫
0

e−j2πfcτ
′
δ(τ ′ − τ ′n)dτ ′

= x(t) ·
N∑
n=1

c(k)n e j(2πf
(k)
n t+θn)e−j2πfcτ

′
n . (15)

The ACF ř
(k)
yy (τ) of y(k)(t) can be computed by

ř(k)yy (τ) =< y(k)∗(t)y(k)(t+ τ) >

=< x∗(t)x(t+ τ) ·
N∑
n=1

c(k)n e−j(2πf
(k)
n t+θn)e+j2πfcτ

′
n

×
M∑
m=1

c(k)m e j[2πf
(k)
m (t+τ)+θm]e−j2πfcτ

′
m >

(16)

where the operator < · > denotes the time average operator.
If n 6= m, then the ACF ř

(k)
yy (τ) = 0, and if n = m, then the

ACF ř
(k)
yy (τ) can be obtained as

ř(k)yy (τ) = |A|2 e j2πfcτ
N∑
n=1

[
c(k)n

]2
e j2πf

(k)
n τ

= |A|2
N∑
n=1

[
c(k)n

]2
e j2π(fc+f

(k)
n )τ . (17)

The DPS Š(k)
yy (f) of the measured channel of the kth snapshot

can be obtained by taking the Fourier transform of the ACF
ř
(k)
yy (τ) with respect to τ which results in

Š(k)
yy (f) = |A|2

N∑
n=1

[
c(k)n

]2
δ(f − fc − f (k)n ) . (18)

Finally, the time-variant DPS of the measured UWA channel
after normalizing with respect to the amplitude squared |A|2
and the carrier frequency fc can be presented by

Š(k)
yy (f, t) =

N∑
n=1

[
c(k)n

]2
δ(f − f (k)n ) (19)

for t ∈ [tk, tk+1).

REFERENCES

[1] P. A. van Walree, T. Jenserud, and M. Smedsrud, “A discrete-time
channel simulator driven by measured scattering functions,” IEEE J.
Sel. Areas Commun., vol. 26, no. 9, pp. 1628–1637, Dec. 2008.

[2] S. Watts, L. Rosenberg, S. Bocquet, and M. Ritchie, “Doppler spectra of
medium grazing angle sea clutter; part 1: characterisation,” IET Radar,
Sonar Navigation, vol. 10, no. 1, pp. 24–31, 2016.

[3] M. Stojanovic, “Underwater acoustic communications: Design consider-
ations on the physical layer,” in Proc. 5th Annu. Conf. Wireless Demand
Netw. Syst. Services (WONS), Jan. 2008, pp. 1–10.

[4] M. Naderi, M. Pätzold, and A. G. Zajić, “The design of measurement-
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