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Abstract. The covariant wedge products of tetrads in General Relativity are introduced and re-

lated field equations are derived. The electromagnetic dual field is treated in detail and it is shown

that this field is closely related with one component field, which is eigenfunction of d’Alembertian

operator. The formalism is developed to incorporate internal symmetry.

I. INTRODUCTION

The construction of the unified theory of all fundamental interactions has been an
enthusiastic source for intensive research works during the last decades. Notable progress
has been made in some directions, among those are string theories [1, 2] and standard
models [3,4] . However, they all have their own complexities and shortcomings, and most
important, neither can combine Einstein’s General Relativity and Quantum Theory in a
suitable manner.

Recently, on the other hand, there has been a lot of works, e.g. [5–8], making
attempts to approach the unification problem on the fundamental of General Relativity.
This idea is also in a perfect agreement with the Geometric Langlands Correspondence
[9,10] between Geometry and Physics. The essence of the insights is that all fundamental
interactions are originated from the nature of spacetime itself, as the gravitational is.

Our present work is done along this line. Its aim is to elaborate on the concept of
wedge products for tetrad and to derive the related equations. The paper is organized
as follows. In Sec. 2 the wedge products with respect to tetrad and Lorentz indices are
introduced, as well as the generally covariant version of εµνλρ, which we name B-field.
The related field equations are derived in Sec. 3. In particular, it is shown that the B-
field is eigenfunction of d’Alembertian operator. Sec. 4 is devoted to the electromagnetic
dual field. In the last section (Sec. 5) we extend the formalism to incorporate internal
symmetry.

II. COVARIANT WEDGE PRODUCTS FOR TETRAD

The tetrad specifies a tangent space at each point of the Riemann manifold. E.
Cartan found that the moving frame tetrad is an alternative way to describe Einstein’s
General Relativity. The tetrad denoted by qa

µ(x) consists of four linear vectors satisfying
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the orthgonal relations:

gµν(x)qa
µ(x)qb

ν(x) = ηab, (1)

a, b being tetrad indices, µ, ν- Lorentz indices, ηa,b- Minkowski metric = diag(1,−1,−1,−1),
gµν(x)- spacetime metric tensor.

The meaning of tetrad is given from the reciprocal formula

ηabq
a
µ(x)qb

ν(x) = gµν(x), (2)

which means that the metric tensor can be expressed in terms of tetrad.
The tetrad components of an arbitrary tensor Tµ1µ2 . . . µr

ν1ν2...νs are defined as

T b1b2...bs

a1a2...ar

(x) ≡ qµ1

a1
. . . qµr

ar

T ν1ν2...νs

µ1µ2...µr

qb1
ν1

. . . qbs

νs

, (3)

which is invariant under the general transformation of spacetime coordinates

xµ → x′µ = fµ(x) (4)

In the tetrad formalism the invariance principle requires the action to be invariant under
the general transformation (4) and the local Lorentz transformation of the tetrad:

qµ
a (x) → q′

µ
a = Λb

a(x)qµ
b (x), (5)

where Λb
a(x) are the local parameters satisfying the condition

ηabΛc
a(x)Λd

b(x) = ηcd, (6)

The wedge products of tetrads are defined in the following manner:

• Wedge product ∧T with respect to tetrad indices:

Gµν,ab(x) ≡ (qµ ∧T qν)ab = εabcdq
c
µ(x)qd

ν(x), (7)

where εabcd is totally antisymmetric constant tensor with ε0123 = +1;
• Wedge product ∧L with respect to Lorentz indices:

Fµν,ab(x) =
(

qa ∧L qb
)µν

= εµνλρ(x)qa
λ(x)qb

ρ(x), (8)

where εµνλρ(x) is totally antisymmetric tensor having εabcd as tetrad compo-
nents, namely

εµνλρ(x) ≡ εabcdqµ
a (x)qν

b (x)qλ
c (x)qρ

d(x) (9)

and

εabcd ≡ qa
µ(x)qb

ν(x)qc
λ(x)qd

ρ(x)εµνλρ(x). (10)

Note that Gµν,ab(x) and Fµνλρ(x) are antisymmetric with respect both to µν

and ab, εµνλρ(x) is totally antisymmetric.
• Wedge product with respect both to tetrad and Lorentz indices:

T
µν
ab (x) ≡ (q ∧LT q)µν

ab = εµνλρ(x)εabcdq
c
λ(x)qd

ρ(x). (11)
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III. BASIC EQUATIONS

In this section we are dealing with some basic equations related to tetrad.
First it is worth noting that the Einstein’s equation

Rµν −
1

2
Rgµν = kTµν (12)

and the equation for tetrad
(

Rν
µ −

1

2
Rδν

µ − kT ν
µ

)

qa
ν (x) = 0 (13)

are quite equivalent. This can be easily shown, using equations (1) and (2).
Next we derive the equations for the wedge products defined in §2. The starting

point is the equation for covariant derivative of tetrad:

Dαqa
µ ≡ ∂αqa

µ(x) − Γν
αµ(x)qa

ν (x) = 0, (14)

Γν
αµ(x) being affine connection. This equation is a direct consequence of the equation

Dαgµν(x) = 0 (15)

and equation (2).
Let V µν be some antisymmetric tensor having the form of tetrad product like (7)–

(11). It follows immediately that

DαV µν(x) ≡ ∂αV µν + Γµ
ασV σν + Γν

ασV µσ = 0 (16)

and as a result we have

∂µV µν = −Γσ
µσV µν. (17)

Hence, we have the equations:
(

∂µ + Γσ
µσ

)

G
µν
ab (x) = 0

(

∂µ + Γσ
µσ

)

Fµν,ab(x) = 0
(

∂µ + Γσ
µσ

)

T
µν
ab (x) = 0

(18)

Taking the differentiation ∂ν of both sides of equation (17), we have

0 = −∂νΓσ
µσV µν − Γσ

µσ∂νV µν =
= −∂νΓσ

µσV µν + Γσ
µσΓρ

νρV
µν = −∂νΓσ

µσV µν .
(19)

Hence,

∂νΓσ
µσFµν,ab = 0

∂νΓσ
µσG

µν
ab = 0

∂νΓσ
µσT

µν
ab = 0

(20)

For εµνλρ(x) tensor the equation

Dαεµνλρ(x) = 0 (21)

gives

∂αεµνλρ(x) = Γσ
αµεσνλρ(x) + Γσ

ανεµσλρ(x) + Γσ
αλεµνσρ(x) + Γσ

αρεµνλσ(x)
= Γσ

ασεµνλρ(x).
(22)
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Similarly, we have

∂αεµνλρ(x) = −Γσ
ασεµνλρ(x). (23)

Taking the differentiation ∂α ≡ ηαβ∂β of both sides of equations (22) and (23), we have
{

� − (ηαβΓγ
αγΓδ

βδ + ∂αΓγ
αγ)

}

εµνλρ(x) = 0 (24)

and
{

� − (ηαβΓγ
αγΓδ

βδ − ∂αΓγ
αγ)

}

εµνλρ(x) = 0 (25)

where � = ηαβ∂α∂β is the d’Alembertian operator, ηαβ - the Minkowski metric tensor.

So, εµνλρ(x) tensor, which we name B-field,

B(x) = ε0123(x), (26)

is eigenfunction of d’Alembertian operator.

IV. ELECTROMAGNETIC DUAL FIELD

Consider now the electromagnetic field strength tensor

Fµν ≡ ∂µAν − ∂νAµ. (27)

First we note that Fµν is a generally covariant tensor because the affine connection
Γσ

µν is symmetric, Γσ
µν = Γσ

νµ, and hence we can rewrite it in terms of covariant derivatives:

Fµν = DµAν − DνAµ. (28)

Define the wedge product ∧L of Dµ and Aµ according to the formula analogous to
(8):

Bµν(x) ≡ (D ∧L A)µν ≡ εµνλρ(x)DλAρ(x)
= 1

2εµνλρ(x)Fλρ(x).
(29)

Let us remind that with the identification

F0i = Ei, F23 = H1, F31 = H2, F12 = H3 (30)

for electric ~E and magnetic ~H fields, equation (27) represents Maxwell’s equations:

~E = − gradA0 + ∂ ~A
∂t

~H = rot ~A
(31)

The equation (29) gives the relations

B0i(x) = B(x)Hi(x)
Bij(x) = εijkB(x)Ek(x); i, j, k = 1, 2, 3

(32)

where B(x) is defined in (26), ε123 = +1. Now we look for the equation for Bµν (x). From
the definition (29) we have

∂µBµν(x) =
1

2

(

∂µεµνλρ(x)Fλρ(x) + εµνλρ∂µFλρ(x)

)

(33)
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The second term in the right hand side vanishes identically, while the first term can be
again expressed in terms of Bµν using the equation (23) to give

(

∂µ + Γσ
µσ

)

Bµν (x) = 0. (34)

The limiting case when the spacetime is flat corresponds to the values

gµν = ηµν , Γσ
µν = 0 (35)

B(x) = 1, B0i(x) = Hi(x), Bij(x) = εijkEk. (36)

In this case the equation (4.8) reduces to

∂µBµν(x) = 0, (37)

giving the relation

∂ ~H

∂t
= rot ~E (38)

in accordance with (31).

V. TETRAD WITH INTERNAL SYMMETRY

In this section we extend the results obtained above to incorporate the internal sym-
metry. Suppose the algebra of the underlying symmetry groups G consists of n generators
Ii, i = 1, 2, . . . , n, with the commutation relations:

[Ii, Ij] = ifijkIk; i, j, k = 1, 2, . . . , n (39)

fijk being structural constants of the Lie algebra g = Lie G.
Now each tetrad component bears an internal group index besides others to become

qa
µi(x), and instead of the formulae (1), (2) and (9) we have:

gµν,ij(x) = ηabq
a
µi(x)qb

νj(x), (40)

gµν(x) ≡ gµν,ii = ηabq
a
µi(x)qb

νi(x), (41)

ηab = qa
µi(x)qb

νi(x)gµν, (42)

εµνλρ(x) =≡
1

3
εabcdσijklq

a
µi(x)qb

νj(x)qc
λk(x)qd

ρl(x) (43)

σijkl ≡ (δijδkl + δikδjl + δilδjk) . (44)

The following wedge products of tetrad can be introduced:

• Wedge product with respect to tetrad indices:

Gµν,ab,ij ≡ (qµi ∧T qνj)ab = εabcdq
c
µiq

d
νj ; (45)

• Wedge product with respect to Lorentz indices:

F
µν,ab
ij ≡ (qa

i ∧L qb
j)

µν = εµνλρqa
λiq

b
ρj ; (46)
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• Wedge product with respect to internal indices:

Hab
µν,i ≡ (qa

µ ∧I qb
ν)i = fijkqa

µjq
b
νk . (47)

• Wedge product with respect to tetrad and Lorentz indices:

T
µν
ab,ij ≡ (qi ∧LT qj)

µν
ab = εµνλρ(x)εabcdq

c
λiq

d
ρj (48)

• Wedge product with respect to tetrad and internal indices:

Nµν,ab,i ≡ (qµΛT Iqν)ab,i = εabcdfijkqc
µjq

d
νk (49)

• Wedge product with respect to Lorentz and internal indices:

M
µν,ab
i ≡ (qa ∧LI qb)µν

i = εµνλρ(x)fijkq
a
λjq

b
ρk. (50)

The wedge product with respect to all kinds of indices defined as

(q ∧ q)µν
ab,i ≡ εµνλρεabcdfijkqc

λjq
d
ρk (51)

identically vanishes.
Note also that Nµν,ab,i is symmetric with respect to Lorentz indices (µν), while

F
µν,ab
ij , T

µν
ab,ij, M

µν,ab
i and

Gµν,ab ≡
∑

i

Gµν,ab,ii (52)

Hµν,i ≡
∑

a,b

ηabH
ab
µν,i (53)

are antisymmetric.
As products of tetrads, the covariant derivatives of all of them vanish, and as a

consequence we have:
(

∂µ + Γσ
µσ

)

N
µν
ab,i = −Γν

µσN
µσ
ab,i (54)

and

(∂µ + Γσ
µσ)Aµν = 0, ∂νΓσ

µσAµν = 0. (55)

In the case G = SU(3) from tetrad we can also construct symmetric second rank tensors
of the form

Sµν,k ≡ dijkηabq
a
µiq

b
νj

Sµν,ij ≡ dijkSµν,k = dijkdmnkηabq
a
µnqb

νm,
(56)

where dijk is totally symmetric constant SU(3) tensor appearing in the anticommutators
of Gell-Mann matricies:

{λi, λj} = 2dijkλk +
4

3
δij (57)

and satisfying the identity
∑

l

(dijlflkm + djklflim + dkilfljm) = 0. (58)
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Being symmetric, the tensors (56) satisfy the same equation as (54):

(∂µ + Γσ
µσ)Sµν

k = −Γν
µσS

µσ
k . (59)

With the internal symmetry hidden in spacetime we might consider the spacetime coor-
dinates xµ of the form:

xµ =

n
∑

i=1

x
µ
i hi, (60)

where {xµ
i } and {hi} are attributed to regular representation of G, i.e. obey the commu-

tation relations:

[Ik, x
µ
j ] = ifkjlx

µ
l

[Ik, hj] = ifkjlhl (61)

Now using (40), we can construct for x
µ
i invariant interval

dS2 = gµν,ijdx
µ
i dν

j (62)

and using (47), (50), we can construct invariant areas:

dH = Hµν,i(dxµ ∧I dxν)i = Hµν,ifijkdx
µ
j dxν

k, (63)

dM = M
µν
i (dx∧LI dx)µν,i = M

µν
i εµνλρ(x)fijkdxλ

j dx
ρ
k. (64)

In the case G = SU(3), using (56) we can construct an invariant interval of the form:

dS2 = Sµν,ijdx
µ
i dxν

j . (65)
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