187 research outputs found

    A two-dimensional mathematical model of percutaneous drug absorption

    Get PDF
    Background When a drug is applied on the skin surface, the concentration of the drug accumulated in the skin and the amount of the drug eliminated into the blood vessel depend on the value of a parameter, r. The values of r depend on the amount of diffusion and the normalized skin-capillary clearence. It is defined as the ratio of the steady-state drug concentration at the skin-capillary boundary to that at the skin-surface in one-dimensional models. The present paper studies the effect of the parameter values, when the region of contact of the skin with the drug, is a line segment on the skin surface. Methods Though a simple one-dimensional model is often useful to describe percutaneous drug absorption, it may be better represented by multi-dimensional models. A two-dimensional mathematical model is developed for percutaneous absorption of a drug, which may be used when the diffusion of the drug in the direction parallel to the skin surface must be examined, as well as in the direction into the skin, examined in one-dimensional models. This model consists of a linear second-order parabolic equation with appropriate initial conditions and boundary conditions. These boundary conditions are of Dirichlet type, Neumann type or Robin type. A finite-difference method which maintains second-order accuracy in space along the boundary, is developed to solve the parabolic equation. Extrapolation in time is applied to improve the accuracy in time. Solution of the parabolic equation gives the concentration of the drug in the skin at a given time. Results Simulation of the numerical methods described is carried out with various values of the parameter r. The illustrations are given in the form of figures. Conclusion Based on the values of r, conclusions are drawn about (1) the flow rate of the drug, (2) the flux and the cumulative amount of drug eliminated into the receptor cell, (3) the steady-state value of the flux, (4) the time to reach the steady-state value of the flux and (5) the optimal value of r, which gives the maximum absorption of the drug. The paper gives valuable information which can be obtained by this two-dimensional model, that cannot be obtained with one-dimensional models. Thus this model improves upon the much simpler one-dimensional models. Some future directions of the work based on this model and the one-dimensional non-linear models that exist in the literature, are also discussed

    Radiative Transfer Modeling of Lyman Alpha Emitters. I. Statistics of Spectra and Luminosity

    Full text link
    We combine a cosmological reionization simulation with box size of 100Mpc/h on a side and a Monte Carlo Lyman-alpha (Lya) radiative transfer code to model Lyman Alpha Emitters (LAEs) at z~5.7. The model introduces Lya radiative transfer as the single factor for transforming the intrinsic Lya emission properties into the observed ones. Spatial diffusion of Lya photons from radiative transfer results in extended Lya emission and only the central part with high surface brightness can be observed. Because of radiative transfer, the appearance of LAEs depends on density and velocity structures in circumgalactic and intergalactic media as well as the viewing angle, which leads to a broad distribution of apparent (observed) Lya luminosity for a given intrinsic Lya luminosity. Radiative transfer also causes frequency diffusion of Lya photons. The resultant Lya line is asymmetric with a red tail. The peak of the Lya line shifts towards longer wavelength and the shift is anti-correlated with the apparent to intrinsic Lya luminosity ratio. The simple radiative transfer model provides a new framework for studying LAEs. It is able to explain an array of observed properties of z~5.7 LAEs in Ouchi et al. (2008), producing Lya spectra, morphology, and apparent Lya luminosity function (LF) similar to those seen in observation. The broad distribution of apparent Lya luminosity at fixed UV luminosity provides a natural explanation for the observed UV LF, especially the turnover towards the low luminosity end. The model also reproduces the observed distribution of Lya equivalent width (EW) and explains the deficit of UV bright, high EW sources. Because of the broad distribution of the apparent to intrinsic Lya luminosity ratio, the model predicts effective duty cycles and Lya escape fractions for LAEs.Comment: 28 pages, 22 figures, accepted for publication in ApJ, revised according to the referee's comment

    Increased Phosphorylation of Vimentin in Noninfiltrative Meningiomas

    Get PDF
    International audienceBACKGROUND: Tissue invasion or tissue infiltration are clinical behaviors of a poor-prognosis subset of meningiomas. We carried out proteomic analyses of tissue extracts to discover new markers to accurately distinguish between infiltrative and noninfiltrative meningiomas. METHODOLOGY/PRINCIPAL FINDINGS: Protein lysates of 64 different tissue samples (including two brain-invasive and 32 infiltrative tumors) were submitted to SELDI-TOF mass spectrometric analysis. Mass profiles were used to build up both unsupervised and supervised hierarchical clustering. One marker was found at high levels in noninvasive and noninfiltrative tumors and appeared to be a discriminative marker for clustering infiltrative and/or invasive meningiomas versus noninvasive meningiomas in two distinct subsets. Sensitivity and specificity were 86.7% and 100%, respectively. This marker was purified and identified as a multiphosphorylated form of vimentin, a cytoskeletal protein expressed in meningiomas. CONCLUSIONS/SIGNIFICANCE: Specific forms of vimentin can be surrogate molecular indicators of the invasive/infiltrative phenotype in tumors

    A Bayesian Model for Detection of Highorder Interactions Among Genetic Variants in Genome-Wide Association Studies

    Get PDF
    Background: A central question for disease studies and crop improvements is how genetics variants drive phenotypes. Genome Wide Association Study (GWAS) provides a powerful tool for characterizing the genotypephenotype relationships in complex traits and diseases. Epistasis (gene-gene interaction), including high-order interaction among more than two genes, often plays important roles in complex traits and diseases, but current GWAS analysis usually just focuses on additive effects of single nucleotide polymorphisms (SNPs). The lack of effective computational modelling of high-order functional interactions often leads to significant under-utilization of GWAS data. Results: We have developed a novel Bayesian computational method with a Markov Chain Monte Carlo (MCMC) search, and implemented the method as a Bayesian High-order Interaction Toolkit (BHIT) for detecting epistatic interactions among SNPs. BHIT first builds a Bayesian model on both continuous data and discrete data, which is capable of detecting high-order interactions in SNPs related to case—control or quantitative phenotypes. We also developed a pipeline that enables users to apply BHIT on different species in different use cases. Conclusions: Using both simulation data and soybean nutritional seed composition studies on oil content and protein content, BHIT effectively detected some high-order interactions associated with phenotypes, and it outperformed a number of other available tools. BHIT is freely available for academic users at http://digbio.missouri.edu/BHIT/

    Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The corpus luteum (CL) is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr) on the microvascular endothelial cells (pCL-MVECs) of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p), and during pregnancy (P-p). Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested.</p> <p>Methods</p> <p>Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2). After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage.</p> <p>PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence) and hormonal treatment (P4 and E2) on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha.</p> <p>Results</p> <p>We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA) in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA). prostaglandin F2-alpha treatment failed to induce an apoptotic response in all the pCL-MVEC cultures.</p> <p>Conclusion</p> <p>Our data showing the presence of FPr on MVECs and the inability of prostaglandin F2-alpha to evoke an in vitro apoptotic response suggest that other molecules or mechanisms must be considered in order to explain the in vivo direct pro-apoptotic effect of prostaglandin F2-alpha at the endothelial level.</p

    Structure-Function Study of Mammalian Munc18-1 and C. elegans UNC-18 Implicates Domain 3b in the Regulation of Exocytosis

    Get PDF
    Munc18-1 is an essential synaptic protein functioning during multiple stages of the exocytotic process including vesicle recruitment, docking and fusion. These functions require a number of distinct syntaxin-dependent interactions; however, Munc18-1 also regulates vesicle fusion via syntaxin-independent interactions with other exocytotic proteins. Although the structural regions of the Munc18-1 protein involved in closed-conformation syntaxin binding have been thoroughly examined, regions of the protein involved in other interactions are poorly characterised. To investigate this we performed a random transposon mutagenesis, identifying domain 3b of Munc18-1 as a functionally important region of the protein. Transposon insertion in an exposed loop within this domain specifically disrupted Mint1 binding despite leaving affinity for closed conformation syntaxin and binding to the SNARE complex unaffected. The insertion mutation significantly reduced total amounts of exocytosis as measured by carbon fiber amperometry in chromaffin cells. Introduction of the equivalent mutation in UNC-18 in Caenorhabditis elegans also reduced neurotransmitter release as assessed by aldicarb sensitivity. Correlation between the two experimental methods for recording changes in the number of exocytotic events was verified using a previously identified gain of function Munc18-1 mutation E466K (increased exocytosis in chromaffin cells and aldicarb hypersensitivity of C. elegans). These data implicate a novel role for an exposed loop in domain 3b of Munc18-1 in transducing regulation of vesicle fusion independent of closed-conformation syntaxin binding

    The Germinal Center Kinase GCK-1 Is a Negative Regulator of MAP Kinase Activation and Apoptosis in the C. elegans Germline

    Get PDF
    The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts

    Bear bile: dilemma of traditional medicinal use and animal protection

    Get PDF
    Bear bile has been used in Traditional Chinese Medicine (TCM) for thousands of years. Modern investigations showed that it has a wide range of pharmacological actions with little toxicological side effect and the pure compounds have been used for curing hepatic and biliary disorders for decades. However, extensive consumption of bear bile made bears endangered species. In the 1980's, bear farming was established in China to extract bear bile from living bears with "Free-dripping Fistula Technique". Bear farming is extremely inhumane and many bears died of illness such as chronic infections and liver cancer. Efforts are now given by non-governmental organizations, mass media and Chinese government to end bear farming ultimately. At the same time, systematic research has to be done to find an alternative for bear bile. In this review, we focused on the literature, laboratory and clinical results related to bear bile and its substitutes or alternative in English and Chinese databases. We examined the substitutes or alternative of bear bile from three aspects: pure compounds derived from bear bile, biles from other animals and herbs from TCM. We then discussed the strategy for stopping the trading of bear bile and issues of bear bile related to potential alternative candidates, existing problems in alternative research and work to be done in the future

    Elevated Levels of the Polo Kinase Cdc5 Override the Mec1/ATR Checkpoint in Budding Yeast by Acting at Different Steps of the Signaling Pathway

    Get PDF
    Checkpoints are surveillance mechanisms that constitute a barrier to oncogenesis by preserving genome integrity. Loss of checkpoint function is an early event in tumorigenesis. Polo kinases (Plks) are fundamental regulators of cell cycle progression in all eukaryotes and are frequently overexpressed in tumors. Through their polo box domain, Plks target multiple substrates previously phosphorylated by CDKs and MAPKs. In response to DNA damage, Plks are temporally inhibited in order to maintain the checkpoint-dependent cell cycle block while their activity is required to silence the checkpoint response and resume cell cycle progression. Here, we report that, in budding yeast, overproduction of the Cdc5 polo kinase overrides the checkpoint signaling induced by double strand DNA breaks (DSBs), preventing the phosphorylation of several Mec1/ATR targets, including Ddc2/ATRIP, the checkpoint mediator Rad9, and the transducer kinase Rad53/CHK2. We also show that high levels of Cdc5 slow down DSB processing in a Rad9-dependent manner, but do not prevent the binding of checkpoint factors to a single DSB. Finally, we provide evidence that Sae2, the functional ortholog of human CtIP, which regulates DSB processing and inhibits checkpoint signaling, is regulated by Cdc5. We propose that Cdc5 interferes with the checkpoint response to DSBs acting at multiple levels in the signal transduction pathway and at an early step required to resect DSB ends
    • …
    corecore