405 research outputs found

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    The longitudinal relationship between job mobility, perceived organizational justice, and health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main purpose of the present study was to examine the 2-year longitudinal and reciprocal relationship between job mobility and health and burnout. A second aim was to elucidate the effects of perceived organizational justice and turnover intentions on the relationship between job mobility (non-, internally and externally mobile), and health (SF-36) and burnout (CBI).</p> <p>Methods</p> <p>The study used questionnaire data from 662 Swedish civil servants and the data were analysed with Structural Equation Modeling statistical methods.</p> <p>Results</p> <p>The results showed that job mobility was a better predictor of health and burnout, than health and burnout were as predictors of job mobility. The predictive effects were most obvious for psychosocial health and burnout, but negligible as far as physical health was concerned. Organizational justice was found to have a direct impact on health, but not on job mobility; whereas turnover intentions had a direct effect on job mobility.</p> <p>Conclusion</p> <p>The predictive relationship between job mobility and health has practical implications for health promotive actions in different organizations.</p

    Observation and study of baryonic B decays: B -> D(*) p pbar, D(*) p pbar pi, and D(*) p pbar pi pi

    Get PDF
    We present a study of ten B-meson decays to a D(*), a proton-antiproton pair, and a system of up to two pions using BaBar's data set of 455x10^6 BBbar pairs. Four of the modes (B0bar -> D0 p anti-p, B0bar -> D*0 p anti-p, B0bar -> D+ p anti-p pi-, B0bar -> D*+ p anti-p pi-) are studied with improved statistics compared to previous measurements; six of the modes (B- -> D0 p anti-p pi-, B- -> D*0 p anti-p pi-, B0bar -> D0 p anti-p pi- pi+, B0bar -> D*0 p anti-p pi- pi+, B- -> D+ p anti-p pi- pi-, B- -> D*+ p anti-p pi- pi-) are first observations. The branching fractions for 3- and 5-body decays are suppressed compared to 4-body decays. Kinematic distributions for 3-body decays show non-overlapping threshold enhancements in m(p anti-p) and m(D(*)0 p) in the Dalitz plots. For 4-body decays, m(p pi-) mass projections show a narrow peak with mass and full width of (1497.4 +- 3.0 +- 0.9) MeV/c2, and (47 +- 12 +- 4) MeV/c2, respectively, where the first (second) errors are statistical (systematic). For 5-body decays, mass projections are similar to phase space expectations. All results are preliminary.Comment: 28 pages, 90 postscript figures, submitted to LP0

    A Multitrait–Multimethod Analysis of the Construct Validity of Child Anxiety Disorders in a Clinical Sample

    Get PDF
    The present study examines the construct validity of separation anxiety disorder (SAD), social phobia (SoP), panic disorder (PD), and generalized anxiety disorder (GAD) in a clinical sample of children. Participants were 174 children, 6 to 17 years old (94 boys) who had undergone a diagnostic evaluation at a university hospital based clinic. Parent and child ratings of symptom severity were assessed using the Multidimensional Anxiety Scale for Children (MASC). Diagnostician ratings were obtained from the Anxiety Disorders Interview Schedule for Children and Parents (ADIS: C/P). Discriminant and convergent validity were assessed using confirmatory factor analytic techniques to test a multitrait–multimethod model. Confirmatory factor analyses supported the current classification of these child anxiety disorders. The disorders demonstrated statistical independence from each other (discriminant validity of traits), the model fit better when the anxiety syndromes were specified than when no specific syndromes were specified (convergent validity), and the methods of assessment yielded distinguishable, unique types of information about child anxiety (discriminant validity of methods). Using a multi-informant approach, these findings support the distinctions between childhood anxiety disorders as delineated in the current classification system, suggesting that disagreement between informants in psychometric studies of child anxiety measures is not due to poor construct validity of these anxiety syndromes

    Corticolimbic Expression of TRPC4 and TRPC5 Channels in the Rodent Brain

    Get PDF
    The canonical transient receptor potential (TRPC) channels are a family of non-selective cation channels that are activated by increases in intracellular Ca2+ and Gq/phospholipase C-coupled receptors. We used quantitative real-time PCR, in situ hybridization, immunoblots and patch-clamp recording from several brain regions to examine the expression of the predominant TRPC channels in the rodent brain. Quantitative real-time PCR of the seven TRPC channels in the rodent brain revealed that TRPC4 and TRPC5 channels were the predominant TRPC subtypes in the adult rat brain. In situ hybridization histochemistry and immunoblotting further resolved a dense corticolimbic expression of the TRPC4 and TRPC5 channels. Total protein expression of HIP TRPC4 and 5 proteins increased throughout development and peaked late in adulthood (6–9 weeks). In adults, TRPC4 expression was high throughout the frontal cortex, lateral septum (LS), pyramidal cell layer of the hippocampus (HIP), dentate gyrus (DG), and ventral subiculum (vSUB). TRPC5 was highly expressed in the frontal cortex, pyramidal cell layer of the HIP, DG, and hypothalamus. Detailed examination of frontal cortical layer mRNA expression indicated TRPC4 mRNA is distributed throughout layers 2–6 of the prefrontal cortex (PFC), motor cortex (MCx), and somatosensory cortex (SCx). TRPC5 mRNA expression was concentrated specifically in the deep layers 5/6 and superficial layers 2/3 of the PFC and anterior cingulate. Patch-clamp recording indicated a strong metabotropic glutamate-activated cation current-mediated depolarization that was dependent on intracellular Ca2+and inhibited by protein kinase C in brain regions associated with dense TRPC4 or 5 expression and absent in regions lacking TRPC4 and 5 expression. Overall, the dense corticolimbic expression pattern suggests that these Gq/PLC coupled nonselective cation channels may be involved in learning, memory, and goal-directed behaviors

    Contribution of a Common Variant in the Promoter of the 1-α-Hydroxylase Gene (CYP27B1) to Fracture Risk in the Elderly

    Get PDF
    CYP27B1 encodes mitochondrial 1α-hydroxylase, which converts 25-hydroxyvitamin D to its active 1,25-dihydroxylated metabolite. We tested the hypothesis that common variants in the CYP27B1 promoter are associated with fracture risk. The study was designed as a population-based genetic association study, which involved 153 men and 596 women aged 65–101 years, who had been followed for 2.2 years (range 0.1–5.5) between 1999 and 2006. During the follow-up period, the incidence of fragility fractures was ascertained. Bone ultrasound attenuation (BUA) was measured in all individuals, as were serum 25-hydroxyvitamin D and PTH concentrations; 86% subjects had vitamin D insufficiency. Genotypes were determined for the –1260C>A (rs10877012) and +2838T>C (rs4646536) CYP27B1 polymorphisms. A reporter gene assay was used to assess functional expression of the –1260C>A CYP27B1 variants. The association between genotypes and fracture risk was analyzed by Cox’s proportional hazards model. We found that genotypic distribution of CYP27B1 –1260 and CYP27B1 +2838 polymorphisms was consistent with the Hardy-Weinberg equilibrium law. The two polymorphisms were in high linkage disequilibrium, with D′ = 0.96 and r2 = 0.94. Each C allele of the CYP27B1 –1260 polymorphism was associated with increased risk of fracture (hazard ratio = 1.34, 95% CI 1.03–1.73), after adjustment for age, sex, number of falls, and BUA. In transient transfection studies, a reporter gene downstream of the –1260(A)-containing promoter was more highly expressed than that containing the C allele. These data suggest that a common but functional variation within the CYP27B1 promoter gene is associated with fracture risk in the elderly
    corecore