1,293 research outputs found

    Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrioanguillarum strain 775

    Get PDF
    Anguibactin, the siderophore produced by Vibrio anguillarum 775 is synthesized from 2,3-dihydroxybenzoic acid (DHBA), cysteine and hydroxyhistamine via a nonribosomal peptide synthetase (NRPS) mechanism. Most of the genes encoding anguibactin biosynthetic proteins are harbored by the pJM1 plasmid. In this work we report the identification of a homologue of the plasmid-encoded angB on the chromosome of strain 775. The product of both genes harbor an isochorismate lyase (ICL) domain that converts isochorismic acid to 2,3-dihydro-2,3-dihydroxybenzoic acid, one of the steps of DHBA synthesis. We show in this work that both ICL domains are functional in the production of DHBA in V. anguillarum as well as in E. coli. Substitution by alanine of the aspartic acid residue in the active site of both ICL domains completely abolishes their isochorismate lyase activity in vivo. The two proteins also carry an aryl carrier protein (ArCP) domain. In contrast with the ICL domains only the plasmid encoded ArCP can participate in anguibactin production as determined by complementation analyses and site-directed mutagenesis in the active site of the plasmid encoded protein, S248A. The site-directed mutants, D37A in the ICL domain and S248A in the ArCP domain of the plasmid encoded AngB were also tested in vitro and clearly show the importance of each residue for the domain function and that each domain operates independently.

    Indole is an essential herbivore-induced volatile priming signal in maize

    Get PDF
    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks

    B Cell Depletion Reduces the Number of Autoreactive T Helper Cells and Prevents Glucose-6-Phosphate Isomerase-Induced Arthritis

    Get PDF
    The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI). The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells

    Which clustering algorithm is better for predicting protein complexes?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein-Protein interactions (PPI) play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks.</p> <p>Results</p> <p>In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H) and Tandem Affinity Purification (TAP) methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases.</p> <p>Conclusions</p> <p>While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: <url>http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm</url></p

    Inter-organizational governance and trilateral trust building: a case study of crowdsourcing-based open innovation in China

    Get PDF
    In a case study of a Chinese crowdsourcing intermediary, we explore the impact of inter-organizational governance on trilateral trust-building. We show that formal control and relational governance mechanisms are essential for swift and knowledge-based trust in R&D crowdsourcing. The case also indicates that Chinese businesses continue to use guanxi (informal personal connections) as a relational and contingent mechanism to maintain affect-based trust, but guanxi is shown to inhibit the growth of Internet-based crowdsourcing for open innovation in China

    A search for the decay modes B+/- to h+/- tau l

    Get PDF
    We present a search for the lepton flavor violating decay modes B+/- to h+/- tau l (h= K,pi; l= e,mu) using the BaBar data sample, which corresponds to 472 million BBbar pairs. The search uses events where one B meson is fully reconstructed in one of several hadronic final states. Using the momenta of the reconstructed B, h, and l candidates, we are able to fully determine the tau four-momentum. The resulting tau candidate mass is our main discriminant against combinatorial background. We see no evidence for B+/- to h+/- tau l decays and set a 90% confidence level upper limit on each branching fraction at the level of a few times 10^-5.Comment: 15 pages, 7 figures, submitted to Phys. Rev.

    Evidence for an excess of B -> D(*) Tau Nu decays

    Get PDF
    Based on the full BaBar data sample, we report improved measurements of the ratios R(D(*)) = B(B -> D(*) Tau Nu)/B(B -> D(*) l Nu), where l is either e or mu. These ratios are sensitive to new physics contributions in the form of a charged Higgs boson. We measure R(D) = 0.440 +- 0.058 +- 0.042 and R(D*) = 0.332 +- 0.024 +- 0.018, which exceed the Standard Model expectations by 2.0 sigma and 2.7 sigma, respectively. Taken together, our results disagree with these expectations at the 3.4 sigma level. This excess cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model. We also report the observation of the decay B -> D Tau Nu, with a significance of 6.8 sigma.Comment: Expanded section on systematics, text corrections, improved the format of Figure 2 and included the effect of the change of the Tau polarization due to the charged Higg

    Search for the decay modes D^0 → e^+e^-, D^0 → μ^+μ^-, and D^0 → e^±μ∓

    Get PDF
    We present searches for the rare decay modes D^0→e^+e^-, D^0→μ^+μ^-, and D^0→e^±μ^∓ in continuum e^+e^-→cc events recorded by the BABAR detector in a data sample that corresponds to an integrated luminosity of 468  fb^(-1). These decays are highly Glashow–Iliopoulos–Maiani suppressed but may be enhanced in several extensions of the standard model. Our observed event yields are consistent with the expected backgrounds. An excess is seen in the D^0→μ^+μ^- channel, although the observed yield is consistent with an upward background fluctuation at the 5% level. Using the Feldman–Cousins method, we set the following 90% confidence level intervals on the branching fractions: B(D^0→e^+e^-)<1.7×10^(-7), B(D^0→μ^+μ^-) within [0.6,8.1]×10^(-7), and B(D^0→e^±μ^∓)<3.3×10^(-7)

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation
    corecore