7,217 research outputs found

    Selective Dynamic Nuclear Spin Polarization in Spin-Blocked Double-Dot

    Full text link
    We study the mechanism of dynamical nuclear spin polarization by hyperfine interaction in spin-blocked double quantum dot system. We calculate the hyperfine transition rates and solve the master equations for the nuclear spins. Specifically, we incorporate the effects of the nuclear quadrupole coupling due to the doping-induced local lattice distortion and strain. Our results show that nuclear quadrupole coupling induced by the 5% indium substitution can be used to explain the recent experimental observation of missing arsenic NMR signal in the spin-blocked double dots.Comment: 4 pages, 3 figure

    Frequency control of photonic crystal membrane resonators by mono-layer deposition

    Get PDF
    We study the response of GaAs photonic crystal membrane resonators to thin film deposition. Slow spectral shifts of the cavity mode of several nanometers are observed at low temperatures, caused by cryo-gettering of background molecules. Heating the membrane resets the drift and shielding will prevent drift altogether. In order to explore the drift as a tool to detect surface layers, or to intentionally shift the cavity resonance frequency, we studied the effect of self-assembled monolayers of polypeptide molecules attached to the membranes. The 2 nm thick monolayers lead to a discrete step in the resonance frequency and partially passivate the surface.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Reduced functional measure of cardiovascular reserve predicts admission to critical care unit following kidney transplantation

    Get PDF
    Background: There is currently no effective preoperative assessment for patients undergoing kidney transplantation that is able to identify those at high perioperative risk requiring admission to critical care unit (CCU). We sought to determine if functional measures of cardiovascular reserve, in particular the anaerobic threshold (VO2AT) could identify these patients. Methods: Adult patients were assessed within 4 weeks prior to kidney transplantation in a University hospital with a 37-bed CCU, between April 2010 and June 2012. Cardiopulmonary exercise testing (CPET), echocardiography and arterial applanation tonometry were performed. Results: There were 70 participants (age 41.7614.5 years, 60% male, 91.4% living donor kidney recipients, 23.4% were desensitized). 14 patients (20%) required escalation of care from the ward to CCU following transplantation. Reduced anaerobic threshold (VO2AT) was the most significant predictor, independently (OR = 0.43; 95% CI 0.27–0.68; p,0.001) and in the multivariate logistic regression analysis (adjusted OR = 0.26; 95% CI 0.12–0.59; p = 0.001). The area under the receiveroperating- characteristic curve was 0.93, based on a risk prediction model that incorporated VO2AT, body mass index and desensitization status. Neither echocardiographic nor measures of aortic compliance were significantly associated with CCU admission. Conclusions: To our knowledge, this is the first prospective observational study to demonstrate the usefulness of CPET as a preoperative risk stratification tool for patients undergoing kidney transplantation. The study suggests that VO2AT has the potential to predict perioperative morbidity in kidney transplant recipients

    Real-space Visualization of Charge Density Wave Induced Local Inversion-Symmetry Breaking in a Skyrmion Magnet

    Full text link
    Intertwining charge density wave (CDW) with spin and pairing order parameters is a major focus of contemporary condensed matter physics. Lattice distortions and local symmetry breaking resulted from CDWs are crucial for the emergence of correlated and topological states in quantum materials in general. While the presence of CDWs can be detected by diffraction or spectroscopic techniques, atomic visualization of the CDW induced lattice distortions remains limited to CDW with short wavelengths. In this letter, we realized the imaging of incommensurate long-wavelength CDWs based on cryogenic four-dimensional scanning transmission electron microscopy (cryo-4DSTEM). By visualizing the incommensurate CDW induced lattice modulations in a skyrmion magnet EuAl4, we discover two out-of-phase intra-unit cell shear modulations that specifically break the local inversion-symmetry. Our results provide direct evidence for the intertwined spin and charge orders in EuAl4 and key information about local symmetry. Furthermore, we establish cryo-4DSTEM as an indispensable approach to understand CDW induced new quantum states of matter

    Panoramic insights into microevolution and macroevolution of a Prevotella copri-containing lineage in primate guts

    Get PDF
    Prevotella copri and its related taxa are widely detected in mammalian gut microbiomes and have been linked with an enterotype in humans. However, their microevolution and macroevolution among hosts are poorly characterized. In this study, extensively collected marker genes and genomes were analyzed to trace their evolutionary history, host specificity, and biogeographic distribution. Investigations based on marker genes and genomes suggest that a P. copri-containing lineage (PCL) harbors diverse species in higher primates. Firstly, P. copri in the human gut consisted of multiple groups exhibiting high genomic divergence and conspicuous but non-strict biogeographic patterns. Most African strains with high genomic divergence from other strains were phylogenetically located at the root of the species, indicating the co-evolutionary history of P. copri and Homo sapiens. Secondly, although long-term co-evolution between PCL and higher primates was revealed, sporadic signals of co-speciation and extensive host jumping of PCL members were suggested among higher primates. Metagenomic and phylogenetic analyses indicated that P. copri and other PCL species found in domesticated mammals had been recently transmitted from humans. Thirdly, strong evidence was found on the extensively horizontal transfer of genes (e.g., genes encoding carbohydrate-active enzymes) among sympatric P. copri groups and PCL species in the same primate host. Our study provides panoramic insights into the combined effects of vertical and horizontal transmission, as well as potential niche adaptation, on the microevolutionary and macroevolutionary history for an enterotype-representative lineage

    A proposal for the measurement of Rashba and Dresselhaus spin-orbit interaction strengths in a single sample

    Full text link
    We establish an exact analytical treatment for the determination of the strengths of the Rashba and Dresselhaus spin-orbit interactions in a single sample by measuring persistent spin current. A hidden symmetry is exploited in the Hamiltonian to show that the spin current vanishes when the strength of the Dresselhaus interaction becomes equal to the strength of the Rashba term. The results are sustained even in the presence of disorder and thus an experiment in this regard will be challenging.Comment: 5 pages, 5 figure

    Measurement of Rashba and Dresselhaus spin-orbit magnetic fields

    Full text link
    Spin-orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state systems, the resulting spin-orbit fields are referred to as Dresselhaus or Rashba fields, depending on whether the electric fields originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both contributions in a single sample. Here we show that both fields can be measured by optically monitoring the angular dependence of the electrons' spin precession on their direction of movement with respect to the crystal lattice. Furthermore, we demonstrate spin resonance induced by the spin-orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it can be used universally to characterise spin-orbit interactions in semiconductors, facilitating the design of spintronic devices

    Spin Electronics and Spin Computation

    Full text link
    We review several proposed spintronic devices that can provide new functionality or improve available functions of electronic devices. In particular, we discuss a high mobility field effect spin transistor, an all-metal spin transistor, and our recent proposal of an all-semiconductor spin transistor and a spin battery. We also address some key issues in spin-polarized transport, which are relevant to the feasibility and operation of hybrid semiconductor devices. Finally, we discuss a more radical aspect of spintronic research--the spin-based quantum computation and quantum information processing.Comment: 17 pages, 3 figure

    Dynamic Localization in Anisotropic Coulomb Systems: Field Induced Crossover of the Exciton Dimension

    Get PDF
    The effective dimensionality of excitons can be drastically changed by applying an alternating electric field. On the basis of a full three-dimensional description of both coherent and incoherent phenomena in anisotropic structures it is found that appropriate applied oscillating fields change the exciton wave function from anisotropic three dimensional to basically two dimensional. This effective-dimension change is caused by dynamic localization which leads to an increase of the exciton binding energy and of the corresponding oscillator strength

    Influence of Static and Dynamic Disorder on the Anisotropy of Emission in the Ring Antenna Subunits of Purple Bacteria Photosynthetic Systems

    Get PDF
    Using the reduced density matrix formalism the time dependence of the exciton scattering in light-harvesting ring systems of purple bacteria is calculated. In contrast to the work of Kumble and Hochstrasser (J. Chem. Phys. 109 (1998) 855) static disorder (fluctuations of the site energies) as well as dynamic disorder (dissipation) is taken into account. For the description of dissipation we use Redfield theory in exciton eigenstates without secular approximation. This is shown to be equivalent to the Markovian limit of Capek's theory in local states. Circular aggregates with 18 pigments are studied to model the B850 ring of bacteriochlorophyls within LH2 complexes. It can be demonstrated that the dissipation is important for the time-dependent anisotropy of the fluorescence. Smaller values of static disorder are sufficient to produce the same decay rates in the anisotropy in comparison with the results by Kumble and Hochstrasser
    corecore