57,293 research outputs found
Using food-web theory to conserve ecosystems
© 2016, Nature Publishing Group. All rights reserved.Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes
Recommended from our members
Construction of periodic adapted orthonormal frames on closed space curves
The construction of continuous adapted orthonormal frames along C1 closed–loop spatial curves is addressed. Such frames are important in the design of periodic spatial rigid–body motions along smooth closed paths. The construction is illustrated through the simplest non–trivial context — namely, C1 closed loops defined by a single Pythagorean–hodograph (PH) quintic space curve of a prescribed total arc length. It is shown that such curves comprise a two–parameter family, dependent on two angular variables, and they degenerate to planar curves when these parameters differ by an integer multiple of π. The desired frame is constructed through a rotation applied to the normal–plane vectors of the Euler–Rodrigues frame, so as to interpolate a given initial/final frame orientation. A general solution for periodic adapted frames of minimal twist on C1 closed–loop PH curves is possible, although this incurs transcendental terms. However, the C1 closed–loop PH quintics admit particularly simple rational periodic adapted frames
Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: effect of initial pore structure and initial brine pH
We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50°C) at two injected acid strengths for a period of 4 hours. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary
Quantum Communications with Compressed Decoherence Using Bright Squeezed Light
We propose a scheme for long-distance distribution of quantum entanglement in
which the entanglement between qubits at intermediate stations of the channel
is established by using bright light pulses in squeezed states coupled to the
qubits in cavities with a weak dispersive interaction. The fidelity of the
entanglement between qubits at the neighbor stations (10 km apart from each
other) obtained by postselection through the balanced homodyne detection of 7
dB squeezed pulses can reach F=0.99 without using entanglement purification, at
same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure
Correlated continuous-time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics
Standard continuous time random walk (CTRW) models are renewal processes in
the sense that at each jump a new, independent pair of jump length and waiting
time are chosen. Globally, anomalous diffusion emerges through action of the
generalized central limit theorem leading to scale-free forms of the jump
length or waiting time distributions. Here we present a modified version of
recently proposed correlated CTRW processes, where we incorporate a power-law
correlated noise on the level of both jump length and waiting time dynamics. We
obtain a very general stochastic model, that encompasses key features of
several paradigmatic models of anomalous diffusion: discontinuous, scale-free
displacements as in Levy flights, scale-free waiting times as in subdiffusive
CTRWs, and the long-range temporal correlations of fractional Brownian motion
(FBM). We derive the exact solutions for the single-time probability density
functions and extract the scaling behaviours. Interestingly, we find that
different combinations of the model parameters lead to indistinguishable shapes
of the emerging probability density functions and identical scaling laws. Our
model will be useful to describe recent experimental single particle tracking
data, that feature a combination of CTRW and FBM properties.Comment: 25 pages, IOP style, 5 figure
Bond graph based sensitivity and uncertainty analysis modelling for micro-scale multiphysics robust engineering design
Components within micro-scale engineering systems are often at the limits of commercial miniaturization and this can cause unexpected behavior and variation in performance. As such, modelling and analysis of system robustness plays an important role in product development. Here schematic bond graphs are used as a front end in a sensitivity analysis based strategy for modelling robustness in multiphysics micro-scale engineering systems. As an example, the analysis is applied to a behind-the-ear (BTE) hearing aid.
By using bond graphs to model power flow through components within different physical domains of the hearing aid, a set of differential equations to describe the system dynamics is collated. Based on these equations, sensitivity analysis calculations are used to approximately model the nature and the sources of output uncertainty during system operation. These calculations represent a robustness evaluation of the current hearing aid design and offer a means of identifying potential for improved designs of multiphysics systems by way of key parameter identification
Prospect relativity: How choice options influence decision under risk
In many theories of decision under risk (e.g., expected utility theory, rank-dependent utility theory, and prospect theory), the utility of a prospect is independent of other options in the choice set. The experiments presented here show a large effect of the available options, suggesting instead that prospects are valued relative to one another. The judged certainty equivalent for a prospect is strongly influenced by the options available. Similarly, the selection of a preferred prospect is strongly influenced by the prospects available, Alternative theories of decision under risk (e.g., the stochastic difference model, multialternative decision field theory, and range frequency theory), where prospects are valued relative to one another, can provide an account of these context effects
Quantum Solution of Coordination Problems
We present a quantum solution to coordination problems that can be implemented with present technologies. It provides an alternative to existing approaches, which rely on explicit communication, prior commitment or trusted third parties. This quantum mechanism applies to a variety of scenarios for which existing approaches are not feasible.game theory, quantum games
- …
