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Abstract

We present a quantum solution to coordination problems that can

be implemented with existing technologies. It provides an alternative to

existing approaches, which rely on explicit communication, prior com-

mitment or trusted third parties. This quantum mechanism applies to a

variety of scenarios for which existing approaches are not feasible.
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The existence of multiple equilibria in economic systems can lead to coor-

dination failures and consequently to inefficient outcomes. Examples that have

been extensively studied range from firms having to decide whether or not to

enter a competitive market and and how to position their offerings, to the coor-

dinated resolution of social dilemmas involved in the provision of public goods.

Coordination problems have long been studied in the context of game the-

ory [1, 2, 3], where the coordination game is specified by a payoff matrix which

yields several Nash equilibria. These equilibria can at times give the same payoff

to all players, in which case the problem is for them to agree on which one to

coordinate, or different payoffs, leading to a competitive coordination game in

which players prefer different equilibria.

A simple example of a cooperative coordination game is that of two people

having to choose driving on the left or the right side of the road, for which the

payoff matrix is shown in Table 1. As can be seen, there are two Nash equilibria,

with equal payoffs, corresponding to both drivers choosing the same side of the

road. The coordination problem consists in both drivers finding a way to agree

on which side of the road to drive.

choice L R

L 2, 2 −3,−3
R −3,−3 2, 2

Table 1: Payoff structure for two driving choices: left (L), right (R). Each

row and column corresponds to choices made by the first and second players,

respectively, and their corresponding payoffs.

This and many other instances of coordination problems can be solved in

several ways. A first solution resorts to a trusted third party who knows the

preferences of the participants and is given the authority to pick an equilibrium

which is then broadcasted to the players. In the case of competitive coordination

problems the trusted third party may also have enforcement powers, since some

players may wish to move the group to a more preferable equilibrium.
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Another solution to coordination problems involves communication among

players so that they can negotiate a choice. In the case of cooperative games

even one player flipping a coin and broadcasting the result as the corresponding

choice provides an effective solution. In a competitive setting, the negotiation

might be such that the players wish to choose their equilibria at random as it

would then be perceived as a fair choice. This case would require a trusted

mechanism of coin flipping over a communication line, which can be enforced

through cryptographic protocols.

A third mechanism for solving coordination problems invokes social norms,

in which common knowledge of the participants’ preferences can distinguish a

given equilibrium from the others, as in the case of choosing the largest river

as a boundary between two countries. Such distinguished equilibria are often

called focal points [1, 4].

While these mechanisms can solve in principle coordination problems, there

are times when none of these options are available, either because they are too

expensive, slow or difficult to implement, or because privacy worries prevent the

participants from using any of these options. Even worse, a constraint from a

larger context, such as the need to use a mixed strategy, might make it disad-

vantageous for players to have their choices revealed in advance. Furthermore

in cases where communication between parties is asynchronous there is the ad-

ditional problem of achieving common knowledge [2], i.e. all parties know that

the others know how to act. A simple example is that of using email to coordi-

nate a meeting when one is not sure that recipients have read their emails and

acknowledgements before the start of the meeting [5, 6].

It would appear that in these instances the only choice left for the par-

ticipants is to choose at random which strategy to pursue, which would lead

to many instances of coordination failures and a consequent reduction in their

respective payoffs. Nevertheless, as we now show, there is an alternative and

superior solution, which resorts to quantum mechanics to solve coordination

problems without communication, trusted third parties or prearranged strate-

gies. Moreover, this quantum solution is implementable in the real world, thus
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making coordination problems easier to solve.

The way quantum dynamics allows for the practical solution of a coordina-

tion problem is via the generation of particles in entangled states. Quantum

entanglement results in the appearance of specific quantum correlations between

parts of a composite system, which can be exploited for quantum information

processing [7]. In particular, parametric-down conversion techniques can pro-

duce twin photons which are perfectly quantum correlated in time, space and

often in polarization [8]. These photons can then be physically separated at

arbitrary distances so that each participant gets one of the entangled particles.

In the simplest case, where players face two choices, 0, and 1, they can use

entangled particles with two physically observable states, such as their spin or

polarization. As shown in Fig. 1, the corresponding state is then given by a

superposition of the two correlated possibilities, denoted as (|0, 0〉+ |1, 1〉)/√2.
At a time of their choosing, each participant observes the state of their particle,

resulting into a 0 or a 1 state, and makes the corresponding choice. The key

aspect that makes this technique different from random choices is that entan-

glement implies a definite correlation between the two measurements, i.e. both

players get either a 0 or a 1, irrespective of the spatial separation between them,

and without communication.

One could argue that this correlation could also be achieved classically by

flipping two coins in advance, hiding them into two boxes given go the play-

ers which they then open at some later time. However, unlike the entangled

quantum solution we just described, this procedure predetermines the outcome,

which may not be desirable if the players wish to defer the choices as long as

possible. In this case an adversary might learn how the players will choose long

before they actually do, and thus adjust its strategy accordingly.

To illustrate this consider the case of two players trying to coordinate on a

mixed strategy against a third one without resorting to previous agreement or

communication, as in the case of a coordinated attack on a rival or enemy. For

the sake of example, consider the game of rock, paper, scissors, in which the

two allied players must make the same choice to have any chance of winning.
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Entangled pair

Figure 1: A source of entangled photons sends one each to the participants of a

coordination game.

If the allies make different choices their payoffs are zero and the third player

gets a payoff of 1. When the two allies make the same choice the payoff to the

allies and the third player are given the payoff matrix of the rock, paper scissors

game, which is shown in Table 2.

choice rock paper scissors

rock 0, 0 0, 1 1, 0

paper 1, 0 0, 0 0, 1

scissors 0, 1 1, 0 0, 0

Table 2: Payoff structure for the rock, paper, scissors for the pair of allied players

against the third player. Each row and column corresponds to choices made by

the pair (assuming that they are the same) and their opponent, respectively,

and their corresponding payoffs. For example, the entry of the first column,

second row corresponds to the allies both choosing paper and the third player

choosing rock.

This game has the feature that no single choice is best, i.e. there is no pure

strategy Nash equilibrium. Instead, the best strategy for rational players is to

make the choices randomly and with equal probability, which gives it a mixed
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strategy Nash equilibrium with expected payoff of 1/3.

For the full game without coordination the pair of allied players only has

1/3 chance of making the same choice, and another 1/3 to win against their

opponent, leading to an expected payoff of 1/9. If they can be perfectly co-

ordinated their payoff would be 1/3. In this example it is necessary to play

random choices because any a priori commitment between the allied pair would

no longer be a random strategy, and therefore discoverable by observation. If

they instead use a pseudorandom number generator with a common seed, it

could be compromised by the opponent discovering either the random pattern

or the seed. On the other hand, if one of the allied pairs were to use a perfect

private coin toss and communicated it to the other, it would risk being detected

or jammed, leading to loss.

Using the quantum mechanism the players both can have undetectable ran-

domness in their choices, no communication between them and still maintain

complete correlation at every period of the game. Entanglement thus offers a

way for the players to get correlated random bits they can use in addition to

any public, broadcast information, without communication or prior agreement.

Furthermore, this quantum solution cannot be achieved via a classical sim-

ulation since we are requiring the absence of any communication among the

participants. This is unlike the situation with other quantum games propos-

als [9].

Thus, quantum information processing, which already offers the potential

for improved computation, cryptography and economic mechanisms [10, 11, 12,

13, 14] can lead to a perfect solution of complex coordination problems without

resorting to the complex signaling procedures that have been discussed since

they were first studied systematically. In particular it solves the problem of

achieving common knowledge in the presence of asynchronous communication.

This quantum solution of a coordination problem is not just a theoretical

construct, as it can be implemented over relatively large distances. It has been

recently shown that it is possible to produce pairs of entangled photons using

parametric down conversion, that can be sent separately over distances over
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many kilometers. If the lifetime of the entangled state is long, each participant

can then receive an entangled photon and perform a polarization measurement

later, thus not having to communicate with each other during the whole proce-

dure. On the other hand, if the lifetime of the entangled state is shorter than the

period of the game, photons can be regenerated periodically, thereby requiring

a transmission channel from the source to the participants (but not between the

participants). In this case the advantage lies not in avoiding the possibility of

blocked communication by an adversary, but in avoiding the detection of a co-

ordinated solution. This makes for a feasible quantum solution to coordination

problems that can be implemented with current technology, in contrast with

most schemes for arbitrary quantum computation.

This scheme can also be extended to situations involving many participants.

If the problem can be decomposed into independent pairwise coordination that

can be then coordinated at a higher level (hierarchy) then the solution we de-

scribed above can be applied to each pair. More interestingly, it has been

recently shown [15] that it is possible to create entangled states of many parti-

cles in a single step and on demand, which implies that coordination problems

involving many participants can also be solved using the scheme proposed in

this paper.

Finally, this quantum approach to coordination games is more general than

it may first appear, as it can also be applied to a variety of economic situations

that involve achieving some or partial coordination among members of a group.

One example is several groups participating in an auction in which the value

of an item to a person depends on what others in their group get. For example

imagine bidding for construction tools that members of a group share and the

auction is for each item separately. In this case, the valuation depends on the

complementarity of the goods that the whole group gets, rather than who in the

group gets each item, While more complicated than the pure coordination game

we discussed because, this problem also involves a bidding strategy, and thus

the need for the group to coordinate without signaling to other groups. The

coordination part of this problem can be solved by having a source produce a
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quantum state |S〉 given by an entangled state that for the case of two particles
could be written as

|S〉 = a|AA〉+ a|BB〉+ b|AB〉+ b|BA〉 (1)

with the constants, a, b, chosen to favor a particular outcome and subject to

the normalization condition 2|a|2 + 2|b|2 = 1. Notice that these coefficients

allow balancing the two parts of the utilities involved in this game, the desire

for coordination and for low cost to the participants. For example, as cost

difference increases, one could reduce a, and increase b. In other words, given a

cost difference between items, one can pick a suitable superposition of states.

Another situation where our quantum mechanism could be useful is a co-

ordination problem in which each player does not know others involved in the

game, or they wish to remain mutually anonymous and avoid communication.

If the interested players are known to be members of a larger group [16]), and

entangled states are easily distributed among members of the larger group, those

players interested in coordinating their activities can use the entangled states

to ensure all players make the same choice.

As we have shown, the utilization of simple properties of quantum states

gives a solution to coordination problems that does not require communica-

tion, trusted third parties involved in the decision making or prior commit-

ment. Equally interesting, this solution is achievable with today’s technology

and opens the practical use of quantum entanglement in real world problems.
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