CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Using food-web theory to conserve ecosystems
Authors
E McDonald-Madden
HP Possingham
Publication date
23 November 2015
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
© 2016, Nature Publishing Group. All rights reserved.Food-web theory can be a powerful guide to the management of complex ecosystems. However, we show that indices of species importance common in food-web and network theory can be a poor guide to ecosystem management, resulting in significantly more extinctions than necessary. We use Bayesian Networks and Constrained Combinatorial Optimization to find optimal management strategies for a wide range of real and hypothetical food webs. This Artificial Intelligence approach provides the ability to test the performance of any index for prioritizing species management in a network. While no single network theory index provides an appropriate guide to management for all food webs, a modified version of the Google PageRank algorithm reliably minimizes the chance and severity of negative outcomes. Our analysis shows that by prioritizing ecosystem management based on the network-wide impact of species protection rather than species loss, we can substantially improve conservation outcomes
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Supporting member
Spiral - Imperial College Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:spiral.imperial.ac.uk:1004...
Last time updated on 17/02/2017