750 research outputs found

    A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions

    Get PDF
    AbstractEarly events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinity chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature

    Tenofovir disoproxil fumarate for prevention of HIV infection in women: a phase 2, double-blind, randomized, placebo-controlled trial.

    Get PDF
    ObjectivesThe objective of this trial was to investigate the safety and preliminary effectiveness of a daily dose of 300 mg of tenofovir disoproxil fumarate (TDF) versus placebo in preventing HIV infection in women.DesignThis was a phase 2, randomized, double-blind, placebo-controlled trial.SettingThe study was conducted between June 2004 and March 2006 in Tema, Ghana; Douala, Cameroon; and Ibadan, Nigeria.ParticipantsWe enrolled 936 HIV-negative women at high risk of HIV infection into this study.InterventionParticipants were randomized 1:1 to once daily use of 300 mg of TDF or placebo.Outcome measuresThe primary safety endpoints were grade 2 or higher serum creatinine elevations (>2.0 mg/dl) for renal function, grade 3 or 4 aspartate aminotransferase or alanine aminotransferase elevations (>170 U/l) for hepatic function, and grade 3 or 4 phosphorus abnormalities (<1.5 mg/dl). The effectiveness endpoint was infection with HIV-1 or HIV-2.ResultsStudy participants contributed 428 person-years of laboratory testing to the primary safety analysis. No significant differences emerged between treatment groups in clinical or laboratory safety outcomes. Study participants contributed 476 person-years of HIV testing to the primary effectiveness analysis, during which time eight seroconversions occurred. Two were diagnosed in participants randomized to TDF (0.86 per 100 person-years) and six in participants receiving placebo (2.48 per 100 person-years), yielding a rate ratio of 0.35 (95% confidence interval = 0.03-1.93), which did not achieve statistical significance. Owing to premature closures of the Cameroon and Nigeria study sites, the planned person-years of follow-up and study power could not be achieved.ConclusionDaily oral use of TDF in HIV-uninfected women was not associated with increased clinical or laboratory adverse events. Effectiveness could not be conclusively evaluated because of the small number of HIV infections observed during the study

    A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field

    Full text link
    Scintillation produced in liquid xenon by alpha particles and gamma rays has been studied as a function of applied electric field. For back scattered gamma rays with energy of about 200 keV, the number of scintillation photons was found to decrease by 64+/-2% with increasing field strength. Consequently, the pulse shape discrimination power between alpha particles and gamma rays is found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in Physics Research

    Perturbed angular correlation study of Ta-181-doped PbTi1-xHfxO3 compounds

    Full text link
    In this work, the hyperfine quadrupole interaction at Ta-doped PbTi1-xHfxO3 polycrystalline samples is studied for the first time. Powders with x=0.25, 0.50 and 0.75 were prepared and characterized by X-ray diffraction analysis. Perturbed Angular Correlation (PAC) analyses were done as a function of temperature, using low concentration Ta-181 nuclei as probes. In the ferroelectric and paraelectric phases of these compounds two sites were occupied by the probes. For each site the quadrupole frequency, asymmetry and relative distribution width parameters were obtained as a function of temperature above and below the Curie temperature (T-C). One of these sites was assigned to the regular Ti-Hf site, while the other one was assigned to some kind of defect. The behavior of the hyperfine parameters as a function of temperature was analyzed in terms of a recent published phase diagram and the presence of disorder below and above T-C. For the three compositions measured, the obtained hyperfine parameters present discontinuities which correspond to the ferroelectric-paraelectric phase transition. In both phases it was found broad frequency distributed interactions. The disorder in the electronic distribution would be responsible for the broad line width of the hyperfine interaction. (C) 2012 Elsevier B.V. All rights reserved

    Ultra High Energy Cosmology with POLARBEAR

    Full text link
    Observations of the temperature anisotropy of the Cosmic Microwave Background (CMB) lend support to an inflationary origin of the universe, yet no direct evidence verifying inflation exists. Many current experiments are focussing on the CMB's polarization anisotropy, specifically its curl component (called "B-mode" polarization), which remains undetected. The inflationary paradigm predicts the existence of a primordial gravitational wave background that imprints a unique B-mode signature on the CMB's polarization at large angular scales. The CMB B-mode signal also encodes gravitational lensing information at smaller angular scales, bearing the imprint of cosmological large scale structures (LSS) which in turn may elucidate the properties of cosmological neutrinos. The quest for detection of these signals; each of which is orders of magnitude smaller than the CMB temperature anisotropy signal, has motivated the development of background-limited detectors with precise control of systematic effects. The POLARBEAR experiment is designed to perform a deep search for the signature of gravitational waves from inflation and to characterize lensing of the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8 arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver is an array featuring 1274 antenna-coupled superconducting transition edge sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a tensor-to-scalar ratio of 0.025 after two years of observation -- more than an order of magnitude improvement over the current best results, which would test physics at energies near the GUT scale. POLARBEAR had an engineering run in the Inyo Mountains of Eastern California in 2010 and will begin observations in the Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding

    The bolometric focal plane array of the Polarbear CMB experiment

    Full text link
    The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for the possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detector's planar antenna structure is coupled to the telescope's optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane

    Neutralino Dark Matter in Minimal Supergravity: Direct Detection vs. Collider Searches

    Get PDF
    We calculate expected event rates for direct detection of relic neutralinos as a function of parameter space of the minimal supergravity model. Numerical results are presented for the specific case of a 73^{73}Ge detector. We find significant detection rates (R>0.01R> 0.01 events/kg/day) in regions of parameter space most favored by constraints from BXsγB\to X_s\gamma and the cosmological relic density of neutralinos. The detection rates are especially large in regions of large tanβ\tan\beta, where many conventional signals for supersymmetry at collider experiments are difficult to detect. If the parameter tanβ\tan\beta is large, then there is a significant probability that the first direct evidence for supersymmetry could come from direct detection experiments, rather than from collider searches for sparticles.Comment: 25 page REVTEX file including 9 PS figure
    corecore