56 research outputs found

    Effects of socking [sic] density on ammonia excretion and the growth of Nile tilapia (Oreochromis niloticus L.)

    Get PDF
    The effects of stocking density (10, 15, 50 & 75 fish in 65L tank) and ammonia excretion on the growth of Nile tilapia, Oreochromis niloticus (12.19 ± 1.21 g) were investigated. Increasing stocking density of Nile tilapia from 15 fish/tank (2.81 g fish/L) to 75 fish/tank (14.07 g fish/L) resulted in associated increase in ammonia level (1.48 ± 0.87 mg/L to 26.44 ± 11.4 mg/L) and significantly lower growth rates. Significantly better feed conversion ratios were found for fish reared at lower (15 fish/tank) stocking densities compared to higher (75 fish/tank) stocking densities. Individual growth rates were significantly better for fish reared at a lower stocking density 15 fish/tank compared to higher stocking density 75 fish/tank and size variation (coefficient of variation in weight) were positively correlated with stocking density. Although water exchange did not have a significant effect on the growth of Nile tilapia for fish stocked at 10 fish/tank (1.88 g fish/L) and 50 fish/tank (9.38 g fish/L), however, the fish in the higher stocking density (9.38 g fish/L) groups and without water exchange, significantly changed the coloration of their bodies (silver to black) which may be due to the lower oxygen levels combined with higher ammonia levels. Ammonia level increased with increasing stocking density and without water exchange. In this study, it may be suggested that when fish reared at higher stocking densities then water exchange must be taken in to consideration so as to help avoid environmental and physiological stress to the fish

    Effect of salinity on food consumption and growth of juvenile Nile tilapia (Oreochromi niloticus L.)

    Get PDF
    The effect of salinity (0, lO and 20%o, water temperature 28 ± l oC) on food consumption and growth of juvenile Nile tilapia, Oreochromis niloticus L. (9.94 ± 0.15 g) were investigated by feeding group of 20 fish at 2% body weight day. Individual food consumption was measured using X-radiography. There were no significant differences in growth or white muscle protein concentrations among groups. During feed deprivation, weight loss was similar for fish held at O%o and 10 %o salinity, but after 7 days over 50% of the fish maintained at 20%o salinity developed lesions covering 5-25% of the body. No significant relationships were observed between individual specific growth rates and food consumption rates within the groups. The fish in all salinity groups showed a negative correlation between specific growth rate and food conversion ratio. The coefficient of variation for wet weight specific food consumption and the mean share of meal for each fish were used as a measure of social hierarchy strength. A negative correlation was observed between coefficient of variation in food consumption and mean share of meal. The social hierarchy structure was similar in all salinities; 25% of the fish were dominant (18.29% above an equal share of meal) and 30% were subordinate (16.19% below an equal share of meal) and the remainder 45% fish fed theoretical share of meal (MSM, 5.26%)

    Effect of salinity and food ration level on the growth of Nile tilapia (Oreochromis niloticus L.)

    Get PDF
    The effect of salinity (0, 10 & 20‰, water temperature 28 ± 1°C) and food ration (3 and 4.5% bw/day) on food consumption and growth of Nile tilapia, Oreochromis niloticus (10.77 ± 0.21g) were investigated. Individual food consumption was measured using X-radiography technique. Salinities (0, 10 & 20‰) did not have significant effect on the growth rate of groups of Nile tilapia fed at different ration levels (3 & 4.5% bw/day). This study showed that the growth of all-male fish was significantly better than all-female fish for all three salinities and two rations. Salinities from 0 to 20‰ had no effect on growth performance of males or female fish. In the present study, it was evident that fish fed at 3% bw/day ration ate all the food offered and fish fed at 4.5% bw/day did not consumed all amounts. Also, growth performance did not significantly differ among fish fed at 3% bw/day ration level and reared at different salinities. Fish reared under higher salinities (20‰) and fed at higher ration (4.5% bw/day) level had skin lesions and injuries on their body. It was assumed that fish fed at higher ration under higher salinities (20‰) and maintained higher osmoregulatory costs together with osmotic stress may have a negative influence on the appetite of fish. Another possibility that may have affected the appetite could be the unionized ammonia levels that were high. The high-unionized ammonia levels combined with the osmotic stress may have been the cause, or have aided, development of skin lesions and injuries on the fish at higher salinities

    Individuals Maintain Similar Rates of Protein Synthesis Over Time on the Same Plane of Nutrition Under Controlled Environmental Conditions

    Get PDF
    Consistent individual differences in animal performance drive individual fitness under variable environmental conditions and provide the framework through which natural selection can operate. Underlying this concept is the assumption that individuals will display consistent levels of performance in fitness-related traits and interest has focused on individual variation and broad sense repeatability in a range of behavioural and physiological traits. Despite playing a central role in maintenance and growth, and with considerable inter-individual variation documented, broad sense repeatability in rates of protein synthesis has not been assessed. In this study we show for the first time that juvenile flounder Platichthys flesus reared under controlled environmental conditions on the same plane of nutrition for 46 days maintain consistent whole-animal absolute rates of protein synthesis (As). By feeding meals containing 15N-labelled protein and using a stochastic end-point model, two non-terminal measures of protein synthesis were made 32 days apart (d14 and d46). As values (mass-corrected to a standard mass of 12 g) showed 2- to 3-fold variation between individuals on d14 and d46 but individuals showed similar As values on both days with a broad sense repeatability estimate of 0.684 indicating significant consistency in physiological performance under controlled experimental conditions. The use of non-terminal methodologies in studies of animal ecophysiology to make repeat measures of physiological performance enables known individuals to be tracked across changing conditions. Adopting this approach, repeat measures of protein synthesis under controlled conditions will allow individual ontogenetic changes in protein metabolism to be assessed to better understand the ageing process and to determine individual physiological adaptive capacity, and associated energetic costs of adaptation, to global environmental change

    Avanços recentes em nutrição de larvas de peixes

    Get PDF
    Os requisitos nutricionais de larvas de peixes são ainda mal compreendidos, o que leva a altas mortalidades e problemas de qualidade no seu cultivo. Este trabalho pretende fazer uma revisão de novas metodologias de investigação, tais como estudos com marcadores, genómica populacional, programação nutricional, génomica e proteómica funcionais, e fornecer ainda alguns exemplos das utilizações presentes e perspectivas futuras em estudos de nutrição de larvas de peixes

    Oxygen consumption of some Antarctic and British gastropods: An evaluation of cold adaptation

    No full text
    1. The oxygen consumption of four species of inshore gastropods from Signy Island, Antarctica was measured at −1.7 and +0.5°C in seawater. The limpet Nacella concinna (Strebel) showed a decrease in oxygen consumption with settlement in the respirometers, but a Trophon species showed no such settlement response over 24 hr. 2. The oxygen consumption of the Antarctic gastropods is higher than that of some temperate intertidal species both acutely exposed to 0dgC and kept at that temperature for 11 days. 3. However, the oxygen consumption of Antarctic species fall on a line relating oxygen consumption and temperature for some temperate gastropods when the measurements were made at their normal environmental temperatures

    Chapter 8 Protein synthesis in fish

    No full text
    This chapter discusses the rates of protein synthesis in fish. Protein synthesis can be viewed at a number of levels. Whole-animal values can be integrated into the descriptions of assimilation/growth or assimilation/metabolism patterns in different fish species and is the focus of the chapter. The measurement of protein synthesis rates in body organs and tissues can provide information on the extent to which differences exist among various tissues and offer a challenge in understanding the integration of organ metabolism into whole animal physiology. The majority of methods for estimating protein synthesis measure the flux of an amino acid or nitrogen. This involves the use of tracer substances—that is, amino acids labeled with an isotope, which are given in a single dose or by continuous infusion. The measurements, parameters, and formulae that are commonly employed in the studies of protein growth, synthesis, and degradation are described in the chapter. It discusses the mechanism of nutrition and protein synthesis in the fish and explains the impact that protein synthesis has upon the rates of oxygen consumption

    RNA Turnover and Protein Synthesis in Fish Cells.

    No full text
    Abstract not availableJRC.(EI)-Environment Institut
    corecore