45 research outputs found

    Transgenic Zebrafish Recapitulating tbx16 Gene Early Developmental Expression

    Get PDF
    We describe the creation of a transgenic zebrafish expressing GFP driven by a 7.5 kb promoter region of the tbx16 gene. This promoter segment is sufficient to recapitulate early embryonic expression of endogenous tbx16 in the presomitic mesoderm, the polster and, subsequently, in the hatching gland. Expression of GFP in the transgenic lines later in development diverges to some extent from endogenous tbx16 expression with the serendipitous result that one line expresses GFP specifically in commissural primary ascending (CoPA) interneurons of the developing spinal cord. Using this line we demonstrate that the gene mafba (valentino) is expressed in CoPA interneurons

    Cell Lineage and Regional Identity of Cultured Spinal Cord Neural Stem Cells and Comparison to Brain-Derived Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) can be isolated from different regions of the central nervous system. There has been controversy whether regional differences amongst stem and progenitor cells are cell intrinsic and whether these differences are maintained during expansion in culture. The identification of inherent regional differences has important implications for the use of these cells in neural repair. Here, we compared NSCs derived from the spinal cord and embryonic cortex. We found that while cultured cortical and spinal cord derived NSCs respond similarly to mitogens and are equally neuronogenic, they retain and maintain through multiple passages gene expression patterns indicative of the region from which they were isolated (e.g Emx2 and HoxD10). Further microarray analysis identified 229 genes that were differentially expressed between cortical and spinal cord derived neurospheres, including many Hox genes, Nuclear receptors, Irx3, Pace4, Lhx2, Emx2 and Ntrk2. NSCs in the cortex express LeX. However, in the embryonic spinal cord there are two lineally related populations of NSCs: one that expresses LeX and one that does not. The LeX negative population contains few markers of regional identity but is able to generate LeX expressing NSCs that express markers of regional identity. LeX positive cells do not give rise to LeX-negative NSCs. These results demonstrate that while both embryonic cortical and spinal cord NSCs have similar self-renewal properties and multipotency, they retain aspects of regional identity, even when passaged long-term in vitro. Furthermore, there is a population of a LeX negative NSC that is present in neurospheres derived from the embryonic spinal cord but not the cortex

    The histone demethylase LSD1 regulates inner ear progenitor differentiation through interactions with Pax2 and the NuRD repressor complex

    Get PDF
    The histone demethylase LSD1 plays a pivotal role in cellular differentiation, particularly in silencing lineage-specific genes. However, little is known about how LSD1 regulates neurosensory differentiation in the inner ear. Here we show that LSD1 interacts directly with the transcription factor Pax2 to form the NuRD co-repressor complex at the Pax2 target gene loci in a mouse otic neuronal progenitor cell line (VOT-N33). VOT-N33 cells expressing a Pax2-response element reporter were GFP-negative when untreated, but became GFP positive after forced differentiation or treatment with a potent LSD inhibitor. Pharmacological inhibition of LSD1 activity resulted in the enrichment of mono- and di-methylation of H3K4, upregulation of sensory neuronal genes and an increase in the number of sensory neurons in mouse inner ear organoids. Together, these results identify the LSD1/NuRD complex as a previously unrecognized modulator for Pax2-mediated neuronal differentiation in the inner ear

    Lhx2 Is Required for Patterning and Expansion of a Distinct Progenitor Cell Population Committed to Eye Development

    Get PDF
    Progenitor cells committed to eye development become specified in the prospective forebrain and develop subsequently into the optic vesicle and the optic cup. The optic vesicle induces formation of the lens placode in surface ectoderm from which the lens develops. Numerous transcription factors are involved in this process, including the eye-field transcription factors. However, many of these transcription factors also regulate the patterning of the anterior neural plate and their specific role in eye development is difficult to discern since eye-committed progenitor cells are poorly defined. By using a specific part of the Lhx2 promoter to regulate Cre recombinase expression in transgenic mice we have been able to define a distinct progenitor cell population in the forebrain solely committed to eye development. Conditional inactivation of Lhx2 in these progenitor cells causes an arrest in eye development at the stage when the optic vesicle induces lens placode formation in the surface ectoderm. The eye-committed progenitor cell population is present in the Lhx2−/− embryonic forebrain suggesting that commitment to eye development is Lhx2-independent. However, re-expression of Lhx2 in Lhx2−/− progenitor cells only promotes development of retinal pigment epithelium cells, indicating that Lhx2 promotes the acquisition of the oligopotent fate of these progenitor cells. This approach also allowed us to identify genes that distinguish Lhx2 function in eye development from that in the forebrain. Thus, we have defined a distinct progenitor cell population in the forebrain committed to eye development and identified genes linked to Lhx2's function in the expansion and patterning of these progenitor cells

    Ventrolateral Origin of Each Cycle of Rhythmic Activity Generated by the Spinal Cord of the Chick Embryo

    Get PDF
    BACKGROUND: The mechanisms responsible for generating rhythmic motor activity in the developing spinal cord of the chick embryo are poorly understood. Here we investigate whether the activity of motoneurons occurs before other neuronal populations at the beginning of each cycle of rhythmic discharge. METHODOLOGY/PRINCIPAL FINDINGS: The spatiotemporal organization of neural activity in transverse slices of the lumbosacral cord of the chick embryo (E8-E11) was investigated using intrinsic and voltage-sensitive dye (VSD) imaging. VSD signals accompanying episodes of activity comprised a rhythmic decrease in light transmission that corresponded to each cycle of electrical activity recorded from the ipsilateral ventral root. The rhythmic signals were widely synchronized across the cord face, and the largest signal amplitude was in the ventrolateral region where motoneurons are located. In unstained slices we recorded two classes of intrinsic signal. In the first, an episode of rhythmic activity was accompanied by a slow decrease in light transmission that peaked in the dorsal horn and decayed dorsoventrally. Superimposed on this signal was a much smaller rhythmic increase in transmission that was coincident with each cycle of discharge and whose amplitude and spatial distribution was similar to that of the VSD signals. At the onset of a spontaneously occurring episode and each subsequent cycle, both the intrinsic and VSD signals originated within the lateral motor column and spread medially and then dorsally. By contrast, following a dorsal root stimulus, the optical signals originated within the dorsal horn and traveled ventrally to reach the lateral motor column. CONCLUSIONS/SIGNIFICANCE: These findings suggest that motoneuron activity contributes to the initiation of each cycle of rhythmic activity, and that motoneuron and/or R-interneuron synapses are a plausible site for the activity-dependent synaptic depression that modeling studies have identified as a critical mechanism for cycling within an episode
    corecore