2,014 research outputs found

    Testing and Learning on Distributions with Symmetric Noise Invariance

    Full text link
    Kernel embeddings of distributions and the Maximum Mean Discrepancy (MMD), the resulting distance between distributions, are useful tools for fully nonparametric two-sample testing and learning on distributions. However, it is rarely that all possible differences between samples are of interest -- discovered differences can be due to different types of measurement noise, data collection artefacts or other irrelevant sources of variability. We propose distances between distributions which encode invariance to additive symmetric noise, aimed at testing whether the assumed true underlying processes differ. Moreover, we construct invariant features of distributions, leading to learning algorithms robust to the impairment of the input distributions with symmetric additive noise.Comment: 22 page

    Countering Personalized Speech

    Get PDF
    Social media platforms use personalization algorithms to make content curation decisions for each end user. These personalized recommendation decisions are essentially speech conveying a platform\u27s predictions on content relevance for each end user. Yet, they are causing some of the worst problems on the internet. First, they facilitate the precipitous spread of mis- and disinformation by exploiting the very same biases and insecurities that drive end user engagement with such content. Second, they exacerbate social media addiction and related mental health harms by leveraging users\u27 affective needs to drive engagement to greater and greater heights. Lastly, they erode end user privacy and autonomy as both sources and incentives for data collection. As with any harmful speech, the solution is often counterspeech. Free speech jurisprudence considers counterspeech the most speech-protective weapon to combat false or harmful speech. Thus, to combat problematic recommendation decisions, social media platforms, policymakers, and other stakeholders should embolden end users to use counterspeech to reduce the harmful effects of platform personalization. One way to implement this solution is through end user personalization inputs. These inputs reflect end user expression about a platform\u27s recommendation decisions. However, industry-standard personalization inputs are failing to provide effective countermeasures against problematic recommendation decisions. On most, if not all, major social media platforms, the existing inputs confer limited ex post control over the platform\u27s recommendation decisions. In order for end user personalization to achieve the promise of counterspeech, I make several proposals along key regulatory modalities, including revising the architecture of personalization inputs to confer robust ex ante capabilities that filter by content type and characteristics

    Hyperparameter Learning via Distributional Transfer

    Full text link
    Bayesian optimisation is a popular technique for hyperparameter learning but typically requires initial exploration even in cases where similar prior tasks have been solved. We propose to transfer information across tasks using learnt representations of training datasets used in those tasks. This results in a joint Gaussian process model on hyperparameters and data representations. Representations make use of the framework of distribution embeddings into reproducing kernel Hilbert spaces. The developed method has a faster convergence compared to existing baselines, in some cases requiring only a few evaluations of the target objective

    PRAS40 suppresses atherogenesis through inhibition of mTORC1-dependent pro-inflammatory signaling in endothelial cells

    Get PDF
    Endothelial pro-inflammatory activation plays a pivotal role in atherosclerosis, and many pro-inflammatory and atherogenic signals converge upon mechanistic target of rapamycin (mTOR). Inhibitors of mTOR complex 1 (mTORC1) reduced atherosclerosis in preclinical studies, but side effects including insulin resistance and dyslipidemia limit their clinical use in this context. Therefore, we investigated PRAS40, a cell type-specific endogenous modulator of mTORC1, as alternative target. Indeed, we previously found PRAS40 gene therapy to improve metabolic profile; however, its function in endothelial cells and its role in atherosclerosis remain unknown. Here we show that PRAS40 negatively regulates endothelial mTORC1 and pro-inflammatory signaling. Knockdown of PRAS40 in endothelial cells promoted TNFα-induced mTORC1 signaling, proliferation, upregulation of inflammatory markers and monocyte recruitment. In contrast, PRAS40-overexpression blocked mTORC1 and all measures of pro-inflammatory signaling. These effects were mimicked by pharmacological mTORC1-inhibition with torin1. In an in vivo model of atherogenic remodeling, mice with induced endothelium-specific PRAS40 deficiency showed enhanced endothelial pro-inflammatory activation as well as increased neointimal hyperplasia and atherosclerotic lesion formation. These data indicate that PRAS40 suppresses atherosclerosis via inhibition of endothelial mTORC1-mediated pro-inflammatory signaling. In conjunction with its favourable effects on metabolic homeostasis, this renders PRAS40 a potential target for the treatment of atherosclerosis

    The AMIGA sample of isolated galaxies. XI. Optical characterisation of nuclear activity

    Full text link
    Context.- This paper is part of a series involving the AMIGA project (Analysis of the Interstellar Medium of Isolated GAlaxies), which identifies and studies a statistically-significant sample of the most isolated galaxies in the northern sky. Aims.- We present a catalogue of nuclear activity, traced by optical emission lines, in a well-defined sample of the most isolated galaxies in the local Universe, which will be used as a basis for studying the effect of the environment on nuclear activity. Methods.- We obtained spectral data from the 6th Data Release of the Sloan Digital Sky Survey, which were inspected in a semi-automatic way. We subtracted the underlying stellar populations from the spectra (using the software Starlight) and modelled the nuclear emission features. Standard emission-line diagnostics diagrams were applied, using a new classification scheme that takes into account censored data, to classify the type of nuclear emission. Results.- We provide a final catalogue of spectroscopic data, stellar populations, emission lines and classification of optical nuclear activity for AMIGA galaxies. The prevalence of optical active galactic nuclei (AGN) in AMIGA galaxies is 20.4%, or 36.7% including transition objects. The fraction of AGN increases steeply towards earlier morphological types and higher luminosities. We compare these results with a matched analysis of galaxies in isolated denser environments (Hickson Compact Groups). After correcting for the effects of the morphology and luminosity, we find that there is no evidence for a difference in the prevalence of AGN between isolated and compact group galaxies, and we discuss the implications of this result. Conclusions.- We find that a major interaction is not a necessary condition for the triggering of optical AGN.Comment: 16 pages, 11 figures, 12 tables, published in Astronomy and Astrophysics. Figure 5 corrected: [OI] diagram adde
    • …
    corecore