49 research outputs found

    Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition

    Get PDF
    Single-celled Leishmania parasites, transmitted by sand flies, infect humans and other mammals in many tropical and sub-tropical regions, giving rise to a spectrum of diseases called the leishmaniases. Species of parasite within the Leishmania genus can be divided into two groups (referred to as sub-genera) that are separated by up to 100 million years of evolution yet are highly related at the genome level. Our research is focused on identifying gene differences between these sub-genera that may identify proteins that impact on the transmission and pathogenicity of different Leishmania species. Here we report the presence of a highly-variant genomic locus (OHL) that was previously described as absent in parasites of the L. (Viannia) subgenus (on the basis of lack of key genes) but is present and well-characterised (as the LmcDNA16 locus) in all members of the alternative subgenus, L. (Leishmania). We demonstrate that the proteins encoded within the LmcDNA16 and OHL loci are similar in their structure and surface localisation in mammalian-infective amastigotes, despite significant differences in their DNA sequences. Most importantly, we demonstrate that the OHL locus proteins, like the HASP proteins from the LmcDNA16 locus, contain highly variable amino acid repeats that are antigenic in man and may therefore contribute to future vaccine development

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution

    Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva.</p> <p>Methods</p> <p>Saliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP) in the catechol-<it>0</it>-methyltransferase gene (COMT rs4680) and one representative variable number of tandem repeats (VNTR) in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region) were selected for genetic analyses.</p> <p>Results</p> <p>The smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days), repeated freeze-thaw cycles (up to 6 cycles), and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible.</p> <p>Conclusions</p> <p>Whole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using 10 ng of DNA per genotyping reaction, the obtained samples can be used for more than one hundred candidate gene assays. When saliva is collected with an absorbent device, most of the nucleic acid content remains in the device, therefore it is advisable to collect the device separately for later genetic analyses.</p

    Leishmania HASP and SHERP Genes are Required for In Vivo Differentiation, Parasite Transmission and Virulence Attenuation in the Host

    Get PDF
    Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation

    Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds

    Get PDF
    The single-celled parasite Leishmania, transmitted by sand flies in more than 88 tropical and sub-tropical countries globally, infects man and other mammals, causing a spectrum of diseases called the leishmaniases. Over 12 million people are currently infected worldwide with 2 million new cases reported each year. The type of leishmaniasis that develops in the mammalian host is dependent on the species of infecting parasite and the immune response to infection (that can be influenced by host genetic variation). Our research is focused on identifying parasite factors that contribute to pathogenicity in the host and understanding how these might differ between parasite species that give rise to the different clinical forms of leishmaniasis. Molecules of this type might lead to new therapeutic tools in the longer term. In this paper, we report a comparative analysis of gene expression profiles in three Leishmania species that give rise to different types of disease, focusing on the intracellular stages that reside in mammalian macrophages. Our results show that there are only a small number of differences between these parasite species, with host genetics playing only a minor role in influencing the parasites' response to their intracellular habitat. These small changes may be significant, however, in determining the clinical outcome of infection

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    The effects of the small GTPase RhoA on the muscarinic contraction of airway smooth muscle result from its role in regulating actin polymerization

    No full text
    The small GTPase RhoA increases the Ca2+ sensitivity of smooth muscle contraction and myosin light chain (MLC) phosphorylation by inhibiting the activity of MLC phosphatase. RhoA is also a known regulator of cytoskeletal dynamics and actin polymerization in many cell types. In airway smooth muscle (ASM), contractile stimulation induces MLC phosphorylation and actin polymerization, which are both required for active tension generation. The objective of this study was to evaluate the primary mechanism by which RhoA regulates active tension generation in intact ASM during stimulation with acetylcholine (ACh). RhoA activity was inhibited in canine tracheal smooth muscle tissues by expressing the inactive RhoA mutant, RhoA T19N, in the intact tissues or by treating them with the cell-permeant RhoA inhibitor, exoenzyme C3 transferase. RhoA inactivation reduced ACh-induced contractile force by ∼60% and completely inhibited ACh-induced actin polymerization but inhibited ACh-induced MLC phosphorylation by only ∼20%. Inactivation of MLC phosphatase with calyculin A reversed the reduction in MLC phosphorylation caused by RhoA inactivation, but calyculin A did not reverse the depression of active tension and actin polymerization caused by RhoA inactivation. The MLC kinase inhibitor, ML-7, inhibited ACh-induced MLC phosphorylation by ∼80% and depressed active force by ∼70% but did not affect ACh-induced actin polymerization, demonstrating that ACh-stimulated actin polymerization occurs independently of MLC phosphorylation. We conclude that the RhoA-mediated regulation of ACh-induced contractile tension in ASM results from its role in mediating actin polymerization rather than from effects on MLC phosphatase or MLC phosphorylation

    Pattern, style and timing of British–Irish Ice Sheet retreat: Shetland and northern North Sea sector

    Get PDF
    The offshore sector around Shetland remains one of the least well‐studied parts of the former British–Irish Ice Sheet with several long‐standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice‐Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice‐sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi‐proxy suite of new isotopic age assessments, including 32 cosmogenic‐nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector‐wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP, this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice‐margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re‐growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP, stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP, and may have involved one or more subsidiary ice centres on now‐submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine‐influenced Shetland Ice Cap
    corecore