21 research outputs found

    Zymographic assay of plant diamine oxidase on entrapped peroxidase polyacrylamide gel electrophoresis. A study of stability to proteolysis

    Get PDF
    A zymographic assay of diamine oxidase (DAO, histaminase, EC 1.4.3.6), based on a coupled peroxidase reaction, and its behavior at proteolysis in simulated gastric and intestinal conditions, are described. The DAO activity from a vegetal extract of Lathyrus sativus seedlings was directly determined on sodium dodecyl sulfate polyacrylamide electrophoretic gels containing entrapped horseradish peroxidase, with putrescine as substrate of histaminase and ortho-phenylenediamine as co-substrate of peroxidase. The accumulation of azo-aniline, as peroxidase-catalyzed oxidation product, led to well-defined yellow-brown bands on gels, with intensities corresponding to the enzymatic activity of DAO. After image analysis of gels, a linear dependency of DAO content (Coomassie-stained protein bands) and of its enzymatic activity (zymographic bands) with the concentration of the vegetal extract was obtained. In simulated gastric conditions (pH 1.2, 37 °C), the DAO from the vegetal extract lost its enzymatic activity before 15 min of incubation, either in the presence or absence of pepsin. The protein pattern (Coomassie-stained) revealed that the DAO content from the vegetal extract was kept almost constant in the simulated intestinal fluid (containing pancreatin or not), with a slight diminution in the presence of pancreatic proteases. After 10 h of incubation at 37 °C, the DAO enzymatic activity from the vegetal extract was 44.7% in media without pancreatin and 13.6% in the presence of pancreatin, whereas the purified DAO retained only 4.65% of its initial enzymatic activity in the presence of pancreatin

    Extending the Southern Shore of the Island of Inversion to F-28

    Get PDF
    Detailed spectroscopy of the neutron-unbound nucleus F-28 has been performed for the first time following proton/neutron removal from Ne-29/F-29 beams at energies around 230 MeV=nucleon. The invariant-mass spectra were reconstructed for both the F-27((*)) + n and F-26((*)) + 2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the F-28 ground state, with S-n(F-28) = -199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S-n(F-27) = 1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of F-28. Importantly, in the case of the ground state, the reconstructed F-27 + n momentum distribution following neutron removal from F-29 indicates that it arises mainly from the 1p(3/2) neutron intruder configuration. This demonstrates that the island of inversion around N = 20 includes F-28, and most probably F-29, and suggests that O-28 is not doubly magic

    Toward the realization of practicable materials for χ(3) based photonic applications

    No full text
    Two different routes were taken to develop materials for use in all-optical signal processing applications. Both systems exhibited large ultrafast nonlinearities, transparency in the near-infrared, and good processability for integration into photonic devices. © 2006 Optical Society of America
    corecore