3,168 research outputs found

    Intermittent dislocation flow in viscoplastic deformation

    Full text link
    The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations. Analytical methods and sophisticated `dislocation-dynamics' simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behavior of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials. Moreover, it should provide a framework for discussing fundamental aspects of plasticity, that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow

    Potentiation of thrombus instability: a contributory mechanism to the effectiveness of antithrombotic medications

    Get PDF
    © The Author(s) 2018The stability of an arterial thrombus, determined by its structure and ability to resist endogenous fibrinolysis, is a major determinant of the extent of infarction that results from coronary or cerebrovascular thrombosis. There is ample evidence from both laboratory and clinical studies to suggest that in addition to inhibiting platelet aggregation, antithrombotic medications have shear-dependent effects, potentiating thrombus fragility and/or enhancing endogenous fibrinolysis. Such shear-dependent effects, potentiating the fragility of the growing thrombus and/or enhancing endogenous thrombolytic activity, likely contribute to the clinical effectiveness of such medications. It is not clear how much these effects relate to the measured inhibition of platelet aggregation in response to specific agonists. These effects are observable only with techniques that subject the growing thrombus to arterial flow and shear conditions. The effects of antithrombotic medications on thrombus stability and ways of assessing this are reviewed herein, and it is proposed that thrombus stability could become a new target for pharmacological intervention.Peer reviewedFinal Published versio

    Theoretical Models of Sunspot Structure and Dynamics

    Full text link
    Recent progress in theoretical modeling of a sunspot is reviewed. The observed properties of umbral dots are well reproduced by realistic simulations of magnetoconvection in a vertical, monolithic magnetic field. To understand the penumbra, it is useful to distinguish between the inner penumbra, dominated by bright filaments containing slender dark cores, and the outer penumbra, made up of dark and bright filaments of comparable width with corresponding magnetic fields differing in inclination by some 30 degrees and strong Evershed flows in the dark filaments along nearly horizontal or downward-plunging magnetic fields. The role of magnetic flux pumping in submerging magnetic flux in the outer penumbra is examined through numerical experiments, and different geometric models of the penumbral magnetic field are discussed in the light of high-resolution observations. Recent, realistic numerical MHD simulations of an entire sunspot have succeeded in reproducing the salient features of the convective pattern in the umbra and the inner penumbra. The siphon-flow mechanism still provides the best explanation of the Evershed flow, particularly in the outer penumbra where it often consists of cool, supersonic downflows.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Homeostatic competition drives tumor growth and metastasis nucleation

    Full text link
    We propose a mechanism for tumor growth emphasizing the role of homeostatic regulation and tissue stability. We show that competition between surface and bulk effects leads to the existence of a critical size that must be overcome by metastases to reach macroscopic sizes. This property can qualitatively explain the observed size distributions of metastases, while size-independent growth rates cannot account for clinical and experimental data. In addition, it potentially explains the observed preferential growth of metastases on tissue surfaces and membranes such as the pleural and peritoneal layers, suggests a mechanism underlying the seed and soil hypothesis introduced by Stephen Paget in 1889 and yields realistic values for metastatic inefficiency. We propose a number of key experiments to test these concepts. The homeostatic pressure as introduced in this work could constitute a quantitative, experimentally accessible measure for the metastatic potential of early malignant growths.Comment: 13 pages, 11 figures, to be published in the HFSP Journa

    Effects of Thyroxine Exposure on Osteogenesis in Mouse Calvarial Pre-Osteoblasts

    Get PDF
    The incidence of craniosynostosis is one in every 1,800-2500 births. The gene-environment model proposes that if a genetic predisposition is coupled with environmental exposures, the effects can be multiplicative resulting in severely abnormal phenotypes. At present, very little is known about the role of gene-environment interactions in modulating craniosynostosis phenotypes, but prior evidence suggests a role for endocrine factors. Here we provide a report of the effects of thyroid hormone exposure on murine calvaria cells. Murine derived calvaria cells were exposed to critical doses of pharmaceutical thyroxine and analyzed after 3 and 7 days of treatment. Endpoint assays were designed to determine the effects of the hormone exposure on markers of osteogenesis and included, proliferation assay, quantitative ALP activity assay, targeted qPCR for mRNA expression of Runx2, Alp, Ocn, and Twist1, genechip array for 28,853 targets, and targeted osteogenic microarray with qPCR confirmations. Exposure to thyroxine stimulated the cells to express ALP in a dose dependent manner. There were no patterns of difference observed for proliferation. Targeted RNA expression data confirmed expression increases for Alp and Ocn at 7 days in culture. The genechip array suggests substantive expression differences for 46 gene targets and the targeted osteogenesis microarray indicated 23 targets with substantive differences. 11 gene targets were chosen for qPCR confirmation because of their known association with bone or craniosynostosis (Col2a1, Dmp1, Fgf1, 2, Igf1, Mmp9, Phex, Tnf, Htra1, Por, and Dcn). We confirmed substantive increases in mRNA for Phex, FGF1, 2, Tnf, Dmp1, Htra1, Por, Igf1 and Mmp9, and substantive decreases for Dcn. It appears thyroid hormone may exert its effects through increasing osteogenesis. Targets isolated suggest a possible interaction for those gene products associated with calvarial suture growth and homeostasis as well as craniosynostosis. © 2013 Cray et al

    Support and Assessment for Fall Emergency Referrals (SAFER 1) trial protocol. Computerised on-scene decision support for emergency ambulance staff to assess and plan care for older people who have fallen: evaluation of costs and benefits using a pragmatic cluster randomised trial

    Get PDF
    Background: Many emergency ambulance calls are for older people who have fallen. As half of them are left at home, a community-based response may often be more appropriate than hospital attendance. The SAFER 1 trial will assess the costs and benefits of a new healthcare technology - hand-held computers with computerised clinical decision support (CCDS) software - to help paramedics decide who needs hospital attendance, and who can be safely left at home with referral to community falls services. Methods/Design: Pragmatic cluster randomised trial with a qualitative component. We shall allocate 72 paramedics ('clusters') at random between receiving the intervention and a control group delivering care as usual, of whom we expect 60 to complete the trial. Patients are eligible if they are aged 65 or older, live in the study area but not in residential care, and are attended by a study paramedic following an emergency call for a fall. Seven to 10 days after the index fall we shall offer patients the opportunity to opt out of further follow up. Continuing participants will receive questionnaires after one and 6 months, and we shall monitor their routine clinical data for 6 months. We shall interview 20 of these patients in depth. We shall conduct focus groups or semi-structured interviews with paramedics and other stakeholders. The primary outcome is the interval to the first subsequent reported fall (or death). We shall analyse this and other measures of outcome, process and cost by 'intention to treat'. We shall analyse qualitative data thematically. Discussion: Since the SAFER 1 trial received funding in August 2006, implementation has come to terms with ambulance service reorganisation and a new national electronic patient record in England. In response to these hurdles the research team has adapted the research design, including aspects of the intervention, to meet the needs of the ambulance services. In conclusion this complex emergency care trial will provide rigorous evidence on the clinical and cost effectiveness of CCDS for paramedics in the care of older people who have fallen

    Lateral Gene Expression in Drosophila Early Embryos Is Supported by Grainyhead-Mediated Activation and Tiers of Dorsally-Localized Repression

    Get PDF
    The general consensus in the field is that limiting amounts of the transcription factor Dorsal establish dorsal boundaries of genes expressed along the dorsal-ventral (DV) axis of early Drosophila embryos, while repressors establish ventral boundaries. Yet recent studies have provided evidence that repressors act to specify the dorsal boundary of intermediate neuroblasts defective (ind), a gene expressed in a stripe along the DV axis in lateral regions of the embryo. Here we show that a short 12 base pair sequence (“the A-box”) present twice within the ind CRM is both necessary and sufficient to support transcriptional repression in dorsal regions of embryos. To identify binding factors, we conducted affinity chromatography using the A-box element and found a number of DNA-binding proteins and chromatin-associated factors using mass spectroscopy. Only Grainyhead (Grh), a CP2 transcription factor with a unique DNA-binding domain, was found to bind the A-box sequence. Our results suggest that Grh acts as an activator to support expression of ind, which was surprising as we identified this factor using an element that mediates dorsally-localized repression. Grh and Dorsal both contribute to ind transcriptional activation. However, another recent study found that the repressor Capicua (Cic) also binds to the A-box sequence. While Cic was not identified through our A-box affinity chromatography, utilization of the same site, the A-box, by both factors Grh (activator) and Cic (repressor) may also support a “switch-like” response that helps to sharpen the ind dorsal boundary. Furthermore, our results also demonstrate that TGF-β signaling acts to refine ind CRM expression in an A-box independent manner in dorsal-most regions, suggesting that tiers of repression act in dorsal regions of the embryo

    International Retrospective Chart Review of Treatment Patterns in Severe Familial Mediterranean Fever, Tumor Necrosis Factor Receptor–Associated Periodic Syndrome, and Mevalonate Kinase Deficiency/Hyperimmunoglobulinemia D Syndrome

    Get PDF
    Objective: Periodic fever syndrome (PFS) conditions are characterized by recurrent attacks of fever and localized inflammation. This study examined the diagnostic pathway and treatments at tertiary centers for familial Mediterranean fever (FMF), tumor necrosis factor receptor–associated periodic syndrome (TRAPS), and mevalonate kinase deficiency (MKD)/hyperimmunoglobulinemia D syndrome (HIDS). Methods: PFS specialists at medical centers in the US, the European Union, and the eastern Mediterranean participated in a retrospective chart review, providing de‐identified data in an electronic case report form. Patients were treated between 2008 and 2012, with at least 1 year of followup; all had clinical and/or genetically proven disease and were on/eligible for biologic treatment. Results: A total of 134 patients were analyzed: FMF (n = 49), TRAPS (n = 47), and MKD/HIDS (n = 38). Fever was commonly reported as severe across all indications. Other frequently reported severe symptoms were serositis for FMF patients and elevated acute‐phase reactants and gastrointestinal upset for TRAPS and MKD/HIDS. A long delay from disease onset to diagnosis was seen within TRAPS and MKD/HIDS (5.8 and 7.1 years, respectively) compared to a 1.8‐year delay in FMF patients. An equal proportion of TRAPS patients first received anti–interleukin‐1 (anti‐IL‐1) and anti–tumor necrosis factor (anti‐TNF) biologic agents, whereas IL‐1 blockade was the main choice for FMF patients resistant to colchicine and MKD/HIDS patients. For TRAPS patients, treatment with anakinra versus anti‐TNF treatments as first biologic agent resulted in significantly higher clinical and biochemical responses (P = 0.03 and P < 0.01, respectively). No significant differences in responses were observed between biologic agents among other cohorts. Conclusion: Referral patterns and diagnostic delays highlight the need for greater awareness and improved diagnostics for PFS. This real‐world treatment assessment supports the need for further refinement of treatment practices

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
    corecore