701 research outputs found
Recommended from our members
Serum and CSF microRNAs in paediatric malignant GCTs
BACKGROUND: The current biomarkers alpha-fetoprotein and human chorionic gonadotropin have limited sensitivity and specificity for diagnosing malignant germ-cell tumours (GCTs). MicroRNAs (miRNAs) from the miR-371-373 and miR-302/367 clusters are overexpressed in all malignant GCTs, and some of these miRNAs show elevated serum levels at diagnosis. Here, we developed a robust technical pipeline to quantify these miRNAs in the serum and cerebrospinal fluid (CSF). The pipeline was used in samples from a cohort of exclusively paediatric patients with gonadal and extragonadal malignant GCTs, compared with appropriate tumour and non-tumour control groups. METHODS: We developed a method for miRNA quantification that enabled sample adequacy assessment and reliable data normalisation. We performed qRT-PCR profiling for miR-371-373 and miR-302/367 cluster miRNAs in a total of 45 serum and CSF samples, obtained from 25 paediatric patients. RESULTS: The exogenous non-human spike-in cel-miR-39-3p and the endogenous housekeeper miR-30b-5p were optimal for obtaining robust serum and CSF qRT-PCR quantification. A four-serum miRNA panel (miR-371a-3p, miR-372-3p, miR-373-3p and miR-367-3p): (i) showed high sensitivity/specificity for diagnosing paediatric extracranial malignant GCT; (ii) allowed early detection of relapse of a testicular mixed malignant GCT; and (iii) distinguished intracranial malignant GCT from intracranial non-GCT tumours at diagnosis, using CSF and serum samples. CONCLUSIONS: The pipeline we have developed is robust, scalable and transferable. It potentially promises to improve clinical management of paediatric (and adult) malignant GCTs.Grant funding was from CwCUK/GOSHCC (M.J. Murray, K.L. Raby, J.C. Nicholson, N. Coleman), SPARKS (M.J. Murray, J.C. Nicholson, N. Coleman), AstraZeneca (E. Bell, H. Brown and B. Destenaves), CRUK (N. Coleman), MRC (M.J. Murray) and an Erasmus MC MRACE grant (M.A. Rijlaarsdam). The authors also thank the Max Williamson Fund and The Perse Preparatory School, Cambridge for supporting this study.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/bjc.2015.42
Challenges and strategies of children and adolescents with inflammatory bowel disease: a qualitative examination
© 2007 Nicholas et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Straight and Divergent Pathways to Cognitive State: Seven Decades of Follow-Up in the British 1946 Birth Cohort
BACKGROUND: Using the British 1946 birth cohort we previously estimated life course paths to the Addenbrooke's Cognitive Examination (ACE-III). OBJECTIVE: We now compared those whose ACE-III scores were expected, worse and better than predicted from the path model on a range of independent variables including clinical ratings of cognitive impairment and neuroimaging measures. METHODS: Predicted ACE-III scores were categorized into three groups: those with Expected (between -1.5 and 1.5 standard deviation; SD); Worse (1.5 SD) scores. Differences in the independent variables were then tested between these three groups. RESULTS: Compared with the Expected group, those in the Worse group showed independent evidence of progressive cognitive impairment: faster memory decline, more self-reported memory difficulties, more functional difficulties, greater likelihood of being independently rated by experienced specialist clinicians as having a progressive cognitive impairment, and a cortical thinning pattern suggestive of preclinical Alzheimer's disease. Those in the Better group showed slower verbal memory decline and absence of independently rated progressive cognitive impairment compared to the Expected group, but no differences in any of the other independent variables including the neuroimaging variables. CONCLUSION: The residual approach shows that life course features can map directly to clinical diagnoses. One future challenge is to translate this into a readily usable algorithm to identify high-risk individuals in preclinical state, when preventive strategies and therapeutic interventions may be most effective
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.
Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases
The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing
Peer reviewedPublisher PD
Identification of the rumination in cattle using support vector machines with motion-sensitive bolus sensors
The reticuloruminal function is central to the digestive efficiency in ruminants. For cattle, collar- and ear tag-based accelerometer monitors have been developed to assess the time spent ruminating on an individual animal. Cattle that are ill feed less and so ruminate less, thus, the estimation of the time spent ruminating provides insights into the health of individual animals. pH boluses directly provide information on the reticuloruminal function within the rumen and extended (three hours or more) periods during which the ruminal pH value remains below 5.6 is an indicator that dysfunction and poor welfare are likely. Accelerometers, incorporated into the pH boluses, have been used to indicate changes in behaviour patterns (high/low activity), utilised to detect the onset of oestrus. The paper demonstrates for the first time that by processing the reticuloruminal motion, it is possible to recover rumination periods. Reticuloruminal motion energy and the time between reticuloruminal contractions are used as inputs to a Support Vector Machine (SVM) to identify rumination periods with an overall accuracy of 86.1%, corroborated by neck mounted rumination collars
Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage
Recommended from our members
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes
Improved Statistics for Genome-Wide Interaction Analysis
Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al.'s originally-proposed statistics, on account of the inflated error rate that can result
- …