119 research outputs found

    Do semantic standards lack quality? : a survey among 34 semantic standards

    Get PDF
    The adoption of standards to improve interoperability in the automotive, aerospace, shipbuilding and other sectors could save billions. While interoperability standards have been created for a number of industries, problems persist, suggesting a lack of quality of the standards themselves. The issue of semantic standard quality is not often addressed. In this research we take a closer look at the quality of semantics standards, development processes, and survey the current state of the quality of semantic standards by means of a questionnaire that was sent to standards developers. This survey looked at 34 semantic standards, and it shows that the quality of semantic standards for inter-organizational interoperability can be improved. Improved standards may advance interoperability in networked business. Improvement of semantic standards requires transparency of their quality. Although many semantic standard development organisations already have quality assurance in place, this research shows that they could benefit from a quality measuring instrument

    Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    Get PDF
    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of Staphylococcus aureus. These data were then combined with phylogenetic data to provide an evolutionary context. Social species showed significantly higher (18x) antimicrobial activity than solitary species and species with paper nests showed significantly higher (11x) antimicrobial activity than those which excavated burrows. Mud-nest species showed no antimicrobial activity. Solitary, burrow-provisioning wasps diverged at more basal nodes of the phylogenetic trees, while social wasps diverged from the most recent nodes. These data suggest that antimicrobial defences may have evolved in response to ground-dwelling pathogens but the most important variable leading to increased antimicrobial strength was increase in group size and social complexity

    Molecular evolution of the membrane associated progesterone receptor in the Brachionus plicatilis (Rotifera, Monogononta) species complex

    Get PDF
    Author Posting. © Springer, 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Hydrobiologia 662 (2011): 99-106, doi:10.1007/s10750-010-0484-4.Many studies have investigated physiological roles of the membrane associated progesterone receptor (MAPR), but little is known of its evolution. Marked variations in response to exogenous progesterone have been reported for four brachionid rotifer species, suggesting differences in progesterone signaling and reception. Here we report sequence variation for the MAPR gene in the Brachionus plicatilis species complex. Phylogenetic analysis of this receptor is compared with relatedness based on cytochrome c oxidase subunit 1 sequences. Nonsynonymous to synonymous site substitution rate ratios, amino acid divergence, and variations in predicted phosphorylation sites are examined to assess evolution of the MAPR among brachionid clades.National Science Foundation grant BE/GenEn MCB-0412674E to TWS and DMW, and an NSF IGERT fellowship to HAS under DGE 0114400, supported this work

    Significant genetic differentiation among populations of Anomalocardia brasiliana (Gmelin, 1791): A bivalve with planktonic larval dispersion

    Get PDF
    Four Brazilian populations of Anomalocardia brasiliana were tested for mutual genetic homogeneity, using data from 123 sequences of the mtDNA cytochrome oxidase c subunit I gene. A total of 36 haplotypes were identified, those shared being H3 (Canela Island, Prainha and Acupe) and both H5 and H9 (Prainha and Acupe). Haplotype diversity values were high, except for the Camurupim population, whereas nucleotide values were low in all the populations, except for that of Acupe. Only the Prainha population showed a deviation from neutrality and the SSD test did not reject the demographic expansion hypothesis. Fst values showed that the Prainha and Acupe populations represent a single stock, whereas in both the Canela Island and Camurupim stocks, population structures are different and independent. The observed structure at Canela Island may be due to the geographic distance between this population and the remainder. The Camurupim population does not share any haplotype with the remaining populations in northeastern Brazil. The apparent isolation could be due to the rocky barrier located facing the mouth of the Mamanguape River. The results highlight the importance of wide-scale studies to identify and conserve local genetic diversity, especially where migration is restricted

    Age and Diet Affect Gene Expression Profiles in Canine Liver Tissue

    Get PDF
    BACKGROUND: The liver plays a central role in nutrient and xenobiotic metabolism, but its functionality declines with age. Senior dogs suffer from many of the chronic hepatic diseases as elderly humans, with age-related alterations in liver function influenced by diet. However, a large-scale molecular analysis of the liver tissue as affected by age and diet has not been reported in dogs. METHODOLOGY/PRINCIPAL FINDINGS: Liver tissue samples were collected from six senior (12-year old) and six young adult (1-year old) female beagles fed an animal protein-based diet (APB) or a plant protein-based diet (PPB) for 12 months. Total RNA in the liver tissue was extracted and hybridized to Affymetrix GeneChip® Canine Genome Arrays. Using a 2.0-fold cutoff and false discovery rate <0.10, our results indicated that expression of 234 genes was altered by age, while 137 genes were differentially expressed by diet. Based on functional classification, genes affected by age and/or diet were involved in cellular development, nutrient metabolism, and signal transduction. In general, gene expression suggested that senior dogs had an increased risk of the progression of liver disease and dysfunction, as observed in aged humans and rodents. In particular for aged liver, genes related to inflammation, oxidative stress, and glycolysis were up-regulated, whereas genes related to regeneration, xenobiotic metabolism, and cholesterol trafficking were down-regulated. Diet-associated changes in gene expression were more common in young adult dogs (33 genes) as compared to senior dogs (3 genes). CONCLUSION: Our results provide molecular insight pertaining to the aged canine liver and its predisposition to disease and abnormalities. Therefore, our data may aid in future research pertaining to age-associated alterations in hepatic function or identification of potential targets for nutritional management as a means to decrease incidence of age-dependent liver dysfunction

    Epigenetics Offer New Horizons for Colorectal Cancer Prevention

    Get PDF
    In recent years, colorectal cancer (CRC) incidence has been increasing to become a major cause of morbidity and mortality worldwide from cancers, with high rates in westernized societies and increasing rates in developing countries. Epigenetic modifications including changes in DNA methylation, histone modifications, and non-coding RNAs play a critical role in carcinogenesis. Epidemiological data suggest that, in comparison to other cancers, these alterations are particularly common within the gastrointestinal tract. To explain these observations, environmental factors and especially diet were suggested to both prevent and induce CRC. Epigenetic alterations are, in contrast to genetic modifications, potentially reversible, making the use of dietary agents a promising approach in CRC for the development of chemopreventive strategies targeting epigenetic mechanisms. This review focuses on CRC-related epigenetic alterations as a rationale for various levels of prevention strategies and their potential modulation by natural dietary compounds

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

    "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt <it>Pyura stolonifera</it>, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.</p> <p>Results</p> <p>Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within <it>Pyura stolonifera </it>in the different coastal communities they dominate.</p> <p>Conclusions</p> <p>This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.</p
    corecore