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Abstract 

Many studies have investigated physiological roles of the membrane associated progesterone 

receptor (MAPR), but little is known of its evolution. Marked variations in response to 

exogenous progesterone have been reported for four brachionid rotifer species, suggesting 

differences in progesterone signaling and reception. Here we report sequence variation for the 

MAPR gene in the Brachionus plicatilis species complex. Phylogenetic analysis of this receptor 

is compared with relatedness based on cytochrome c oxidase subunit 1 sequences. 

Nonsynonymous to synonymous site substitution rate ratios, amino acid divergence, and 

variations in predicted phosphorylation sites are examined to assess evolution of the MAPR 

among brachionid clades.  

Introduction 

Considering the roles of hormones in moderating life history traits (Ketterson & Val Nolan, 

1999), studies of sex steroid hormones and their receptors may be key to understanding life cycle 

transitions. In Brachionus manjavacas, exogenous progesterone can increase mixis rates (Snell 

& DesRosiers, 2008). Searches of a brachionid transcriptome yielded an expressed sequence tag 

(EST) contig identified as a potential membrane associated progesterone receptor (MAPR) (Snell 

& DesRosiers, 2008). The MAPR gene family is proposed to have originated from an ancestral 

cytochrome b5 (Cyt b5), and contains Neudesin and the vertebrate-specific paralogs 

progesterone receptor membrane component (PGRMC) 1 and 2 (Cahill, 2007). Functions of 

MAPR proteins vary across phyla and range from inhibition of apoptosis in ovarian granulosa 

cells to cholesterol synthesis and axon guidance (Cahill, 2007; Rohe et al., 2009). While 

progesterone binding cannot be assumed by homology, it is notable that the Brachionus putative 

MAPR is the only known candidate receptor for progesterone. Chemical signals mediate 
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brachionid rotifer mate recognition and mixis induction (Snell et al., 2006; Snell et al., 2009), but 

little is known of their evolution. 

Through phylogenetic and substitution rate analyses and structural protein modeling we 

provide further evidence that this EST is a rotifer homolog of membrane associated progesterone 

receptors, and report on molecular evolution of the rotifer MAPR. Sex-related genes are 

associated with higher tendencies for positive selection (Civetta & Singh, 1998). Thus, given the 

ability of progesterone to affect rotifer reproduction, the receptor may undergo positive selection. 

The fact that some rotifers in the B. plicatilis species complex increase diapausing embryo 

production in response to exogenous progesterone, while others remain unaffected at the same 

concentrations (Snell & DesRosiers, 2008), reveals the potential for variations in receptor 

sequence. This could cause differential response to the ligand. We conduct a phylogenetic 

analysis to assess evolution of the MAPR in the B. plicatilis complex, and test for positive, 

purifying, or neutral selection using ratios of nonsynonymous to synonymous site substitution 

rates (dN/dS). Ratios of dN/dS > 1 suggest positive selection, ratios < 1 indicate purifying 

selection, and ratios = 1 imply neutral evolution. We also examine amino acid variation in the 

predicted protein structure. 

Methods 

Cultures — We studied five taxa of the larger L morphotype: B. plicatilis sensu strictu of Poza 

Sur, Spain; B. plicatilis s.s. of Tokyo, Japan; B. manjavacas of the Azov Sea, Russia; B. plicatilis 

“Austria” of Tianjin, China (hereafter “Austria”); and B. plicatilis “Nevada” of Little Fish Lake, 

Nevada, USA (hereafter “Nevada”). We examined three taxa of the smaller SS morphotype: B. 

rotundiformis of Poza Sur, Spain; B. rotundiformis of the Adriatic Sea, Italy; and B. 

rotundiformis of Hawaii (obtained from the Oceanographic Institute of Hawaii; exact collection 
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site unknown). Taxonomy and morphotype classification follows prior descriptions (Gómez et 

al., 2002; Snell & Stelzer, 2005; Fontaneto et al., 2007). Diapausing embryos were hatched at 25º 

C in 15 ppt artificial seawater (ASW, Instant Ocean). For each taxon, we used a single hatchling 

to initiate a clonal lineage, kept at 22º C in 15 ppt ASW and fed Tetraselmis suecica. Embryos 

and hatchlings were kept near 2,000 lux fluorescent lights. 

DNA isolation, amplification, cloning, and sequencing — Roughly 100–500 clonemates from ≥ 

2 replicate cultures were filtered with 68 µm Nitex mesh, then rinsed into a Petri plate with 15 

ppt ASW. Rotifers were ground with a pestle in a microcentrifuge tube with 180 µL of ATL 

buffer of the DNeasy Blood and Tissue kit (Qiagen). DNA was extracted immediately using the 

DNeasy kit. PCR amplification and sequencing were performed for both the nuclear MAPR and 

mitochondrial cytochrome c oxidase subunit 1 (cox1) genes. Sequences of cox1 for four taxa and 

MAPR homologs across eukaryotes were extracted from GenBank (accessions in Figs. 1b, 2); all 

other sequences were obtained in this study and deposited in GenBank (HM024707–

HM024718). PCR conditions are available upon request. The LCO1490 and HCO2198 primers 

were used to amplify cox1 (Folmer et al., 1994), modified by eliminating the first 6 bases at the 

5’ end of LCO1490. Following prior identification of a progesterone receptor partial transcript 

from searches in an EST library (Snell & DesRosiers, 2008), 5’-RACE or rapid amplification of 

complementary DNA ends (Frohman et al., 1988) was performed on a cDNA library to obtain 

the complete coding sequence for the current study. MAPR primers were designed from complete 

coding sequences from 5’-RACE of B. manjavacas (Russia) and B. plicatilis s.s. (NH1L, Japan). 

These were MAPR.F1 (5’-ATGCCAGAAGCGTTTGCTATGG-3’), beginning at position 1 of 

the coding sequence and MAPR.R1 (5’-TAACTTCGGCTGACTCTTCTTCGT-3’), ending 11 

bases upstream of the stop codon.  



4 

Amplicons were PCR purified after visualizing samples via gel electrophoresis or extracted 

with a MinElute Gel Extraction kit (Qiagen). Products of ≥ 2 separate thermal cycling reactions 

were combined, ligated into pCRII-TOPO vector, and transformed into chemically competent 

TOP10 cells with the TopoTA Cloning Kit (Invitrogen). Colonies were subcloned, and plasmids 

purified using the QIAprep Spin Miniprep Kit (Qiagen). From each cloning reaction, ≥ 8 

plasmids were sequenced in forward and reverse with M13 primers on an ABI 3730xl Genetic 

Analyzer with an ABI Big Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems).  

Assembly and analysis — Initial editing and assembly used unix shell scripts from the Josephine 

Bay Paul Center of the Marine Biological Laboratory, combining phred, cross_match, and phrap 

(Ewing & Green, 1998). Chromatograms were reviewed in consed (Gordon et al., 1998). Reads 

were aligned in Clustal X 2.0 (Larkin et al., 2007), and consensus sequences from replicate 

plasmids from the same cloning reaction were made in BioEdit (Hall, 1999). We compared 

mRNA reads from 5’-RACE with DNA sequences to identify intronic v. coding regions. 

The translated B. manjavacas MAPR sequence was submitted to TMHMM server v. 2.0 

(Krogh et al., 2001) and Pfam (Finn et al., 2008) to identity transmembrane helix and functional 

domains. Protein sequences of MAPR homologs from species representing plants, fungi, and an 

array of metazoans were aligned with the amino acid translation of B. manjavacas MAPR using 

the Espresso module of T-Coffee (Notredame et al., 2000). Because the amino and carboxy 

termini were poorly conserved, phylogenies were constructed from both the full-length 

alignment and the high-quality region of the alignment corresponding to positions 53–161 of the 

B. manjavacas peptide using maximum likelihood (ML) and Bayesian methods with the WAG 

model of amino acid change with a gamma shape correction, as chosen by ProtTest (Abascal et 

al., 2005). For ML, four independent runs of Garli 0.96b8 (Zwickl, 2006) were used to find the 
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best tree and 1000 bootstrap replicates were examined to determine support for each node. For 

Bayesian inference, two independent runs of MrBayes v3.1 (Huelsenbeck & Ronquist, 2001) 

using 4 chains and 2 million generations each converged on the same tree and parameter values; 

the first 1 million generations were discarded as burn-in to generate posterior probability support 

for each node. 

Regions between PCR primers (163 codons plus the intron for MAPR, 201 codons for cox1) 

were used for phylogenetic analysis among brachionids. Gene trees of cox1 and MAPR were 

generated using MrBayes 3.1 (Huelsenbeck & Ronquist, 2001), with nucleotide frequencies and 

parameters for the GTR + gamma model estimated independently for codon first + second 

positions and codon third positions (+ intron positions for MAPR). Two independent runs of four 

chains were run for 2 million generations and sampled every 100 generations; comparison of 

parameter estimates indicated convergence (Gelman & Rubin, 1992). The first 1 million 

generations were discarded as burn-in and consensus trees examined with FigTree v1.2.2 

(Rambaut, 2009). Consensus trees and sequence alignments (without the MAPR intron) were 

input in codeml in PAML 4.0 (Yang, 2007) to estimate dN and dS. Likelihood ratio tests 

supported use of codon tables to estimate codon frequency for both genes (CodonFreq=3 in the 

codeml control file); transition/transversion and dN/dS ratios were estimated from the data. Tests 

for selection were M0 (default codeml parameters) v. M3 (Nsites=3, ncat=3); M1a (Nsites=1) v. 

M2a (Nsites=2); and M7 (Nsites=7, ncat=10) v. M8 (Nsites=8, ncat=10) (Zhang et al., 2005); 

results were evaluated by likelihood ratio tests (Yang & Nielsen, 2002). Competing tree 

topologies were evaluated via the Kishino Hasegawa test (Kishino & Hasegawa, 1989) in 

codeml.  

The 3-dimensional structure for MAPR was predicted by submitting the B. manjavacas 
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translated coding sequence to SWISS-MODEL for automated comparative modeling (Schwede 

et al., 2003). Structures were visualized in Cn3D (Wang et al., 2000) after conversion to the 

appropriate format in VAST (Gibrat et al., 1996). Amino acid (aa) substitutions were classified 

as conservative, moderately conservative, moderately radical, or radical (Li et al., 1984). MAPR 

sequences were scanned for PROSITE motifs with ScanProsite (de Castro et al., 2006).  

Results 

The rotifer MAPR amplified region, which began with the presumptive start codon and ended 11 

bases before the stop codon, consisted of 535 bp of coding sequence (178 aa), split by an intron 

of 53–54 bp that began after coding position 458. One transmembrane helix was predicted and 

the only domain with a significant E value found by Pfam was a cytochrome b5-like 

heme/steroid binding domain (Fig. 1a), a domain found in MAPRs of other eukaryotes (Mifsud 

& Bateman, 2002). A search of the NCBI nr database using blastp revealed that the most similar 

sequences contained this domain and were annotated as membrane associated steroid or 

progesterone receptors. In phylogenetic analyses of a diverse set of MAPR homologs, although 

support for nodes was generally poor different methods returned the same best tree topology with 

the B. manjavacas MAPR grouped deeply within the clade of metazoan MAPRs (Fig. 1b), 

distinct from conserved paralogs cytochrome b5 and Neudesin (Cahill, 2007). 

The gene tree of Brachionus MAPR sequences (Fig. 2) was consistent with established 

phylogenetic relationships among Brachionus spp. based on cox1 and ITS (Gómez et al., 2002; 

Suatoni et al., 2006). In contrast, the Bayesian consensus tree for cox1 had no significant support 

for relative positions of “Austria,” “Nevada,” B. manjavacas, and B. plicatilis s.s., and arranged 

the B. plicatilis clade as (“Austria”(B. plicatilis s.s.(“Nevada”, B. manjavacas))), an inaccurate 

arrangement based on the clades’ placement in prior studies (Gómez et al., 2002; Suatoni et al., 
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2006). All codeml analyses using cox1 were performed on the topology of both the cox1 

Bayesian consensus tree and the MAPR tree; resulting likelihoods were compared with the 

Kishino Hasegawa test. In no case was one topology significantly better than the other. Thus, 

further analysis and trees reported in this study (Fig. 2) only use the topology from the MAPR 

consensus tree. Tests for positive selection showed no significant difference in dN/dS between 

branches or across sites, with strong purifying selection for both genes. Allowing variation of 

dN/dS across branches did not result in a significantly better model than keeping the ratio constant 

(for the latter model, dN/dS = 0.06 for MAPR and 0.0003 for cox1), but yielded values of dN up to 

76x higher and dS up to 79x lower for MAPR v. cox1 (Table 1). 

Structural modeling used the Arabidopsis thaliana MAPR homolog, PDB entry 1J03, as a 

template (E value of 8.7x10-30, 42% sequence identity). The model predicted a structure from 

amino acid 61 to 162 of MAPR (Fig. 3). Rohe et al. (2009) reviewed four sites required for heme 

binding in the homolog PGRMC1 surrounding a putative ligand-binding cleft, which we found 

were identical to those in rotifers at analogous sites (Fig. 3).  

Scanning for PROSITE motifs yielded ≥ 10 predicted phosphorylation sites per taxon: 

protein kinase C phosphorylation sites, cAMP- and cGMP-dependent protein kinase 

phosphorylation sites, and casein kinase II phosphorylation sites. With a mere 25 sites of amino 

acid variation among the eight taxa, motifs varied. A phosphorylation site was predicted at 51–54 

aa for the L morphotypes, while those in the three B. rotundiformis were slightly downstream 

(one at 59–62 aa, one at 59–61 aa). Only B. manjavacas had a phosphorylation site predicted at 

64–67 aa, and only B. rotundiformis of Spain and of Italy had phosphorylation sites at 93–96 aa.  

Discussion 

We report the first in-depth analysis of molecular evolution of a MAPR gene in any eukaryotic 
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lineage. Purifying selection on MAPR suggests it has an important role conserved among rotifers. 

Yet, small amino acid differences may enable some functional divergence, perhaps underlying 

variation in life history traits regulated by a progesterone signaling pathway.  

Comparing MAPR and cox1 genes enhances insight of their evolution. The ability of MAPR 

to produce a gene topology consistent with the cox1 gene trees in Gómez et al. (2002) and 

Suatoni et al. (2006) shows its utility as a phylogenetic marker and supports their findings. In the 

MAPR tree genetic distance (branch length, i.e., substitutions per codon) is much shorter among 

members of the SS morphotype and among members of the L morphotype than between these 

two groups, but the difference is less pronounced on the cox1 tree. Use of more samples (rotifer 

lineages) may improve resolution for the cox1 gene tree; however, the fact that the MAPR gene 

provided better resolution for relatedness of the L morphotype clades may be due to the higher 

relative number of nonsynonymous substitutions for MAPR relative to cox1. Since these 

nonsynonymous substitutions represent amino acid changes, and thus are more likely targets for 

the action of selection, they may represent important differences fixed among the clades.  

The branch-site test performed here suggests both genes are under purifying selection (dN/dS 

< 1). Thus, variation in the degree to which exogenous progesterone impacts rotifer reproduction 

(Snell & DesRosiers, 2008) does not appear to reflect positive selection pressure on the MAPR 

gene among sites or branches. Positive selection may occur on other genes in a progesterone 

signaling pathway, or other, as yet unidentified, receptors may play a role in signaling. Still, the 

higher dN of the MAPR v. cox1, despite its lower dS, suggests MAPR is under less intense 

purifying selection. The lower dS is expected, considering the typical trend for mitochondrial 

DNA to show higher rates of mutation than nuclear DNA (Haag-Liautard et al., 2008). The 

higher dN could underlie weak positive selection on MAPR not detected by the branch-site test, 
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or relaxed selection pressure relative to cox1, but further study is needed (e.g., with more clades). 

It has been suggested that some pine tree expressed sequence tags with a dN/dS of 0.20–0.52 are 

under positive selection (Palmé et al., 2008). As Palmé et al. note, a dN/dS above 1 is a 

conservative test for positive selection, and thus absence of a ratio above 1 in our study does not 

eliminate the potential for a weak level of positive selection below the limits of detection.  

Amino acid substitutions that accrued over time may have altered MAPR function even with 

purifying selection. The large number of predicted phosphorylation sites supports a role in signal 

transduction, as reviewed by Cahill (2007). Variation in predicted sites among rotifers could 

allow for differential signal transduction, though more research is required to confirm the sites’ 

function. Four residues critical for heme binding in PGRMC1 are conserved in rotifers. It has 

been proposed structural elements required for binding heme also function in interactions with a 

binding partner that mediates progesterone signaling (Rohe et al., 2009), though study is needed 

to clarify roles of specific amino acids in a progesterone pathway. In rotifers, most substitutions 

in the heme/steroid binding domain are distal to the ligand-binding cleft and are conservative or 

moderately conservative. Still, such changes could affect interactions with other molecules (e.g., 

binding partners). In one human patient a mutation from histidine to arginine at 165 aa was 

found to prevent binding of cytochrome P450 7A1, and linked to premature ovarian failure 

(Mansouri et al., 2008). In all eight rotifers a proline exists at the site; binding of P450 7A1 in 

humans may be derived trait. In conclusion, evolution of the MAPR may represent an overall 

sequence conservation, marked by small but significant changes allowing functional divergence.  
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Table 1. Values of dN, dS, and dN/dS for MAPR and cox1 tree branches, with labels as in Fig. 2. 

dN dS dN/dS dN dS dN/dS dN/dN dS/dS

(a) 0.0000 0.0000 -- 0.0000 0.0276 0.0001 -- 0.00
(b) 0.0000 0.1666 0.00 0.0000 0.0173 0.0001 -- 9.63
(c) 0.0023 3.4325 0.0007 0.0024 0.0714 0.0332 0.96 48.07
(d) 0.0002 2.4332 0.0001 0.0072 0.0307 0.2361 0.03 79.26
(e) 0.0000 0.0000 -- 0.0024 0.0211 0.1154 0.00 0.00
(f) 0.0023 1.9178 0.0012 0.0024 0.0905 0.0266 0.96 21.19
(g) 0.0000 0.0000 -- 0.0027 0.0030 0.8853 0.00 0.00
(h) 0.0005 5.4011 0.0001 0.0151 0.2354 0.0639 0.03 22.94
(i) 0.0006 5.9428 0.0001 0.0455 1.2175 0.0374 0.01 4.88
(j) 0.0002 2.3357 0.0001 0.0074 0.0576 0.1287 0.03 40.55
(k) 0.0000 0.0145 0.0001 0.0000 0.0000 -- -- --
(l) 0.0000 0.0000 -- 0.0000 0.0000 -- -- --
(m) 0.0022 1.7975 0.0012 0.0046 0.0000 -- 0.48 --

Branch
coxI MAPR coxI : MAPR
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Figure 1. (Top, 1a) MAPR transmembrane and heme/steroid binding regions; numbers are 

amino acids. (Bottom, 1b) Phylogeny of MAPR proteins and paralogs; the tree is drawn with 

branch lengths determined by Garli (scale bar shows changes per amino acid position); the same 

topology was found with MrBayes and a very similar topology was found with RaxML (not 

shown). Solid circles above and below nodes show that greater than 70% of bootstrap datasets 

supported the node by Garli and greater than 95% of sampled trees after burn-in supported the 

node with MrBayes (posterior probability), respectively. 
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Figure 2. Bayesian gene trees of cox1 and MAPR with branch lengths from codeml. Scale bars 

are number of nucleotide changes per codon. Letters identify branches in Table 1; numbers are 

Bayesian posterior probabilities (percentages). Accessions are given for cox1 sequences taken 

from GenBank. 

 

Figure 3. Modeled B. manjavacas MAPR from amino acid 61 to 162, with putative ligand-

binding cleft to the right. Image A: amino acid differences among rotifers. Image B: five residues 

conserved among rotifers where the human analog is important to function; all but P156 match 

human analogs.  


