143 research outputs found

    SOME ASPECTS OF ENERGY SAVING OF BURDEN MATERIAL IN THE BLAST FURNACE

    Get PDF
    To determine the possibility of self-stabilization effect for burden surface texture and gas flow in operating blast furnace under the proper conditions was experimentally proved for the first time, as well as the reasons of the effect disruption

    Awe and Wonder in Scientific Practice: Implications for the Relationship Between Science and Religion

    Get PDF
    This paper examines the role of awe and wonder in scientific practice. Drawing on evidence from psychological research and the writings of scientists and science communicators, I argue that awe and wonder play a crucial role in scientific discovery. They focus our attention on the natural world, encourage open-mindedness, diminish the self (particularly feelings of self-importance), help to accord value to the objects that are being studied, and provide a mode of understanding in the absence of full knowledge. I will flesh out implications of the role of awe and wonder in scientific discovery for debates on the relationship between science and religion. Abraham Heschel argued that awe and wonder are religious emotions because they reduce our feelings of self-importance, and thereby help to cultivate the proper reverent attitude towards God. Yet metaphysical naturalists such as Richard Dawkins insist that awe and wonder need not lead to any theistic commitments for scientists. The awe some scientists experience can be regarded as a form of non-theistic spirituality, which is neither a reductive naturalism nor theism. I will attempt to resolve the tension between these views by identifying some common ground

    Techonolgy of Qualea grandiflora Mart. (Vochysiaceae) seeds

    Get PDF
    Qualea grandiflora Mart. (Vochysiaceae), commonly known as "pau-terra", is an arborous species native to the Brazilian savannah which possess commercial interests, as it can be used either as an ornamental or as a medicinal plant. "Pau-terra" can also be used in the heterogeneous reforestation of areas which are destined for restoration of permanent preservation degraded areas. Propagation studies with this species are scarce, being necessary then further clarification regarding the factors that influences the germination process. In this context, the objective of this work was to evaluate the influence of different temperatures, substrates and light conditions on seed germination. We selected light brown seeds which were subjected to different interactions between temperatures (15-25, 20-30, 25 and 30°C), substrate (paper, sand and vermiculite) and light (light and dark). All seeds were later dry-incubated at 32°C for 3, 6 and 12 hours. After treatments, seeds were kept in BOD at 58% RH and the following parameters were calculated: germination (%G) and germination speed index (GSI); the formation of normal and abnormal seedlings and the number dead seeds. Interaction was observed for all variables. In the optimum temperature range, the seeds behaved as photoblastic neutral or indifferent. Under alternating temperatures, darkness enhanced the germination, especially when combined with the lower temperatures. We noted that the sowing in sand, at 25°C, allowed the maintenance of suitable combinations of germination and seedling development. With respect to desiccation tolerance, "pau-terra" seeds presented an orthodox behavior, with a linear increase of the vigor as function of drying

    Contrasting drought tolerance strategies in two desert annuals of hybrid origin

    Get PDF
    Woody plants native to mesic habitats tend to be more vulnerable to drought-induced cavitation than those in xeric habitats. Cavitation resistance in herbaceous plants, however, is rarely studied and whether or not annual plants in arid habitats conform to the trends observed in woody plants is unknown. This question is addressed by comparing the hydraulic properties of annual plants endemic to relatively mesic and seasonally xeric habitats in the Great Basin Desert, in both native and experimental settings. Vulnerability to cavitation between species differed as predicted when vulnerability curves of similar-sized native individuals were compared. Contrary to expectations, Helianthus anomalus from the relatively mesic dune sites, on average, exhibited higher native embolism, lower soil-to-leaf hydraulic conductance (kL) and lower transpiration rates, than its xeric analogue, H. deserticola. In transplant gardens, H. anomalus’ vulnerability to cavitation was unaffected by transplant location or watering treatment. In H. deserticola, however, vulnerability to cavitation varied significantly in response to watering in transplant gardens and varied as a function of stem water potential (Ψstem). H. deserticola largely avoided cavitation through its higher water status and generally more resistant xylem, traits consistent with a short life cycle and typical drought-escape strategy. By contrast, H. anomalus’ higher native embolism is likely to be adaptive by lowering plant conductance and transpiration rate, thus preventing the loss of root-to-soil hydraulic contact in the coarse sand dune soils. For H. anomalus this dehydration avoidance strategy is consistent with its relatively long 3–4 month life cycle and low-competition habitat. We conclude that variance of hydraulic parameters in herbaceous plants is a function of soil moisture heterogeneity and is consistent with the notion that trait plasticity to fine-grained environmental variation can be adaptive

    A genetic locus and gene expression patterns associated with the priming effect on lettuce seed germination at elevated temperatures

    Get PDF
    Seeds of most cultivated varieties of lettuce (Lactuca sativa L.) fail to germinate at warm temperatures (i.e., above 25–30°C). Seed priming (controlled hydration followed by drying) alleviates this thermoinhibition by increasing the maximum germination temperature. We conducted a quantitative trait locus (QTL) analysis of seed germination responses to priming using a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. Priming significantly increased the maximum germination temperature of the RIL population, and a single major QTL was responsible for 47% of the phenotypic variation due to priming. This QTL collocated with Htg6.1, a major QTL from UC96US23 associated with high temperature germination capacity. Seeds of three near-isogenic lines (NILs) carrying an Htg6.1 introgression from UC96US23 in a Salinas genetic background exhibited synergistic increases in maximum germination temperature in response to priming. LsNCED4, a gene encoding a key enzyme (9-cis-epoxycarotinoid dioxygenase) in the abscisic acid biosynthetic pathway, maps precisely with Htg6.1. Expression of LsNCED4 after imbibition for 24 h at high temperature was greater in non-primed seeds of Salinas, of a second cultivar (Titan) and of NILs containing Htg6.1 compared to primed seeds of the same genotypes. In contrast, expression of genes encoding regulated enzymes in the gibberellin and ethylene biosynthetic pathways (LsGA3ox1 and LsACS1, respectively) was enhanced by priming and suppressed by imbibition at elevated temperatures. Developmental and temperature regulation of hormonal biosynthetic pathways is associated with seed priming effects on germination temperature sensitivity

    Adaptive Value of Phenological Traits in Stressful Environments: Predictions Based on Seed Production and Laboratory Natural Selection

    Get PDF
    Phenological traits often show variation within and among natural populations of annual plants. Nevertheless, the adaptive value of post-anthesis traits is seldom tested. In this study, we estimated the adaptive values of pre- and post-anthesis traits in two stressful environments (water stress and interspecific competition), using the selfing annual species Arabidopsis thaliana. By estimating seed production and by performing laboratory natural selection (LNS), we assessed the strength and nature (directional, disruptive and stabilizing) of selection acting on phenological traits in A. thaliana under the two tested stress conditions, each with four intensities. Both the type of stress and its intensity affected the strength and nature of selection, as did genetic constraints among phenological traits. Under water stress, both experimental approaches demonstrated directional selection for a shorter life cycle, although bolting time imposes a genetic constraint on the length of the interval between bolting and anthesis. Under interspecific competition, results from the two experimental approaches showed discrepancies. Estimation of seed production predicted directional selection toward early pre-anthesis traits and long post-anthesis periods. In contrast, the LNS approach suggested neutrality for all phenological traits. This study opens questions on adaptation in complex natural environment where many selective pressures act simultaneously

    Data from: Seasonal variation in life history traits in two Drosophila species

    No full text
    Seasonal environmental heterogeneity is cyclic, persistent and geographically widespread. In species that reproduce multiple times annually, environmental changes across seasonal time may create different selection regimes that may shape the population ecology and life history adaptation in these species. Here, we investigate how two closely related species of Drosophila in a temperate orchard respond to environmental changes across seasonal time. Natural populations of Drosophila melanogaster and D. simulans were sampled at four timepoints from June through November to assess seasonal change in fundamental aspects of population dynamics as well as life history traits. D. melanogaster exhibit pronounced change across seasonal time: early in the season, the population is inferred to be uniformly young and potentially represents the early generation following overwintering survivorship. D. melanogaster isofemale lines derived from the early population and reared in a common garden are characterized by high tolerance to a variety of stressors as well as a fast rate of development in the laboratory environment that declines across seasonal time. In contrast, wild D. simulans populations were inferred to be consistently heterogeneous in age distribution across seasonal collections; only starvation tolerance changed predictably over seasonal time in a parallel manner as in D. melanogaster. These results suggest fundamental differences in population and evolutionary dynamics between these two taxa associated with seasonal heterogeneity in environmental parameters and associated selection pressures
    corecore