220 research outputs found

    Liver transplantation for type I and type IV glycogen storage disease

    Get PDF
    Progressive liver failure or hepatic complications of the primary disease led to orthotopic liver transplantation in eight children with glycogen storage disease over a 9-year period. One patient had glycogen storage disease (GSD) type I (von Gierke disease) and seven patients had type IV GSD (Andersen disease). As previously reported [19], a 16.5-year-old-girl with GSD type I was successfully treated in 1982 by orthotopic liver transplantation under cyclosporine and steroid immunosuppression. The metabolic consequences of the disease have been eliminated, the renal function and size have remained normal, and the patient has lived a normal young adult life. A late portal venous thrombosis was treated successfully with a distal splenorenal shunt. Orthotopic liver transplantation was performed in seven children with type N GSD who had progressive hepatic failure. Two patients died early from technical complications. The other five have no evidence of recurrent hepatic amylopectinosis after 1.1–5.8 postoperative years. They have had good physical and intellectual maturation. Amylopectin was found in many extrahepatic tissues prior to surgery, but cardiopathy and skeletal myopathy have not developed after transplantation. Postoperative heart biopsies from patients showed either minimal amylopectin deposits as long as 4.5 years following transplantation or a dramatic reduction in sequential biopsies from one patient who initially had dense myocardial deposits. Serious hepatic derangement is seen most commonly in types T and IV GSD. Liver transplantation cures the hepatic manifestations of both types. The extrahepatic deposition of abnormal glycogen appears not to be problematic in type I disease, and while potentially more threatening in type IV disease, may actually exhibit signs of regression after hepatic allografting

    Corneal Alterations during Combined Therapy with Cyclodextrin/Allopregnanolone and Miglustat in a Knock-Out Mouse Model of NPC1 Disease

    Get PDF
    BACKGROUND: Niemann Pick disease type C1 is a neurodegenerative disease caused by mutations in the NPC1 gene, which result in accumulation of unesterified cholesterol and glycosphingolipids in the endosomal-lysosomal system as well as limiting membranes. We have previously shown the corneal involvement in NPC1 pathology in form of intracellular inclusions in epithelial cells and keratocytes. The purpose of the present study was to clarify if these inclusions regress during combined substrate reduction- and by-product therapy (SRT and BPT). METHODOLOGY/PRINCIPAL FINDINGS: Starting at postnatal day 7 (P7) and thereafter, NPC1 knock-out mice (NPC1(-/-)) and wild type controls (NPC1(+/+)) were injected with cyclodextrin/allopregnanolone weekly. Additionally, a daily miglustat injection started at P10 until P23. Starting at P23 the mice were fed powdered chow with daily addition of miglustat. The sham group was injected with 0.9% NaCl at P7, thereafter daily starting at P10 until P23, and fed powdered chow starting at P23. For corneal examination, in vivo confocal laser-scanning microscopy (CLSM) was performed one day before experiment was terminated. Excised corneas were harvested for lipid analysis (HPLC/MS) and electron microscopy. In vivo CLSM demonstrated a regression of hyperreflective inclusions in all treated NPC1(-/-)mice. The findings varied between individual mice, demonstrating a regression, ranging from complete absence to pronounced depositions. The reflectivity of inclusions, however, was significantly lower when compared to untreated and sham-injected NPC1(-/-) mice. These confocal findings were confirmed by lipid analysis and electron microscopy. Another important CLSM finding revealed a distinct increase of mature dendritic cell number in corneas of all treated mice (NPC1(-/-) and NPC1(+/+)), including sham-treated ones. CONCLUSIONS/SIGNIFICANCE: The combined substrate reduction- and by-product therapy revealed beneficial effects on the cornea. In vivo CLSM is a non-invasive tool to monitor disease progression and treatment effects in NPC1 disorder

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Receptor-Mediated Endocytosis of α-Galactosidase A in Human Podocytes in Fabry Disease

    Get PDF
    Injury to the glomerular podocyte is a key mechanism in human glomerular disease and podocyte repair is an important therapeutic target. In Fabry disease, podocyte injury is caused by the intracellular accumulation of globotriaosylceramide. This study identifies in the human podocyte three endocytic receptors, mannose 6-phosphate/insulin-like growth II receptor, megalin, and sortilin and demonstrates their drug delivery capabilities for enzyme replacement therapy. Sortilin, a novel α-galactosidase A binding protein, reveals a predominant intracellular expression but also surface expression in the podocyte. The present study provides the rationale for the renal effect of treatment with α-galactosidase A and identifies potential pathways for future non-carbohydrate based drug delivery to the kidney podocyte and other potential affected organs

    Pompe disease diagnosis and management guideline

    Get PDF
    ACMG standards and guidelines are designed primarily as an educational resource for physicians and other health care providers to help them provide quality medical genetic services. Adherence to these standards and guidelines does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. in determining the propriety of any specific procedure or test, the geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patient's record the rationale for any significant deviation from these standards and guidelines.Duke Univ, Med Ctr, Durham, NC 27706 USAOregon Hlth Sci Univ, Portland, OR 97201 USANYU, Sch Med, New York, NY USAUniv Florida, Coll Med, Powell Gene Therapy Ctr, Gainesville, FL 32611 USAIndiana Univ, Bloomington, in 47405 USAUniv Miami, Miller Sch Med, Coral Gables, FL 33124 USAHarvard Univ, Childrens Hosp, Sch Med, Cambridge, MA 02138 USAUniversidade Federal de SĂŁo Paulo, SĂŁo Paulo, BrazilColumbia Univ, New York, NY 10027 USANYU, Bellevue Hosp, Sch Med, New York, NY USAColumbia Univ, Med Ctr, New York, NY 10027 USAUniversidade Federal de SĂŁo Paulo, SĂŁo Paulo, BrazilWeb of Scienc

    Trace elements in glucometabolic disorders: an update

    Get PDF
    Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed
    • 

    corecore