2,947 research outputs found

    Switching of Magnetic Moments of Nanoparticles by Surface Acoustic Waves

    Full text link
    We report evidence of the magnetization reversal in nanoparticles by surface acoustic waves (SAWs). The experimental system consists of isolated magnetite nanoparticles dispersed on a piezoelectric substrate. Magnetic relaxation from a saturated state becomes significantly enhanced in the presence of the SAW at a constant temperature of the substrate. The dependence of the relaxation on SAW power and frequency has been investigated. The effect is explained by the effective ac magnetic field generated by the SAW in the nanoparticles.Comment: Accepted in Europhysics Letter

    Algorithms applied for monitoring pelagic Sargassum

    Get PDF
    Massive arrivals of pelagic Sargassum to the coasts of several countries in the Atlantic Ocean began in 2011. Monitoring the abundance and distribution of Sargassum in the ocean and along the coasts is necessary to understand the phenomena better and develop forecasting products and management protocols. Most Sargassum monitoring has been conducted in the open ocean through traditional remote sensing techniques. However, since the most significant ecologic and socioeconomic impacts occur on the coasts, it is necessary to monitor these macroalgae on nearshore waters and beaches. This manuscript reviews the remote sensing algorithms used in Sargassum observation reported in the last 17 years in more than sixty high-impact scientific publications. The discussion regarding the evolution of the methodologies used for monitoring these macroalgae allowed us to conclude that the synergy generated by incorporating new disciplines like artificial intelligence and citizen science has positively impacted the development of this field. Additionally, the current state-of-the-art methods, the fundamental challenges, and the directions for future research are also discussed

    Numerical analysis of performance uncertainty of heat exchangers operated with nanofluids

    Get PDF
    In this paper, we analyse the performance of two types of heat exchangers with nanofluid as the working fluid in turbulent flow regime ( 4, 000–180, 000). Based on the experimental uncertainty of the thermophysical properties of the nanofluids, we use the Stochastic Collocation Method in combination with a deterministic simulation programme to estimate the expected value and variance of the targeted engineering results. We find that the uncertainty in the thermal conductivity of the nanofluid has the largest impact on the uncertainty in the heat exchanger performance, while the uncertainty in the density can be neglected. The uncertainties in the Nusselt number, friction factor and several figures of merit are smaller than the change in these performance estimators due to a change in nanoparticle concentration. Predictions for heat exchanger performance agree much better with experimental data when used with empirical heat transfer correlations developed specifically for nanofluids than with the general Gnielinski correlation developed for pure fluids. We also perform a correlation analysis of the relationships between heat exchanger performance enhancement and pressure drop to show that they are strongly correlated. We find that the relationship between the concentration of nanoparticles and the Nusselt number is statistically insignificant. The relationship is significant, indicating the importance of flow conditions. The correlation between nanoparticle concentration and friction factor is significant and strong. This result suggests that the optimisation of the thermal-hydrodynamic behaviour should be sought in a parameter other than the nanoparticle volume fraction

    MAP entropy estimation: applications in robust image filtering

    Get PDF
    We introduce a new approach for image filtering in a Bayesian framework. In this case the probability density function (pdf) of thelikelihood function is approximated using the concept of non-parametric or kernel estimation. The method is based on the generalizedGaussian Markov random fields (GGMRF), a class of Markov random fields which are used as prior information into the Bayesian rule, whichprincipal objective is to eliminate those effects caused by the excessive smoothness on the reconstruction process of images which arerich in contours or edges. Accordingly to the hypothesis made for the present work, it is assumed a limited knowledge of the noise pdf,so the idea is to use a non-parametric estimator to estimate such a pdf and then apply the entropy to construct the cost function for thelikelihood term. The previous idea leads to the construction of Maximum a posteriori (MAP) robust estimators, since the real systems arealways exposed to continuous perturbations of unknown nature. Some promising results of three new MAP entropy estimators (MAPEE) forimage filtering are presented, together with some concluding remarks

    Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC

    Full text link
    We present results from daily monitoring of gamma rays in the energy range 0.5\sim0.5 to 100\sim100 TeV with the first 17 months of data from the High Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2 steradians and duty cycle of >95>95% are unique features compared to other TeV observatories that allow us to observe every source that transits over HAWC for up to 6\sim6 hours each sidereal day. This regular sampling yields unprecedented light curves from unbiased measurements that are independent of seasons or weather conditions. For the Crab Nebula as a reference source we find no variability in the TeV band. Our main focus is the study of the TeV blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a power law index Γ=2.21±0.14stat±0.20sys\Gamma=2.21 \pm0.14_{\mathrm{stat}}\pm0.20_{\mathrm{sys}} and an exponential cut-off E0=5.4±1.1stat±1.0sysE_0=5.4 \pm 1.1_{\mathrm{stat}}\pm 1.0_{\mathrm{sys}} TeV. For Mrk 501, we find an index Γ=1.60±0.30stat±0.20sys\Gamma=1.60\pm 0.30_{\mathrm{stat}} \pm 0.20_{\mathrm{sys}} and exponential cut-off E0=5.7±1.6stat±1.0sysE_0=5.7\pm 1.6_{\mathrm{stat}} \pm 1.0_{\mathrm{sys}} TeV. The light curves for both sources show clear variability and a Bayesian analysis is applied to identify changes between flux states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab Nebula flux by a factor of approximately five. For Mrk 501, several transits show fluxes in excess of three times the Crab Nebula flux. In a comparison to lower energy gamma-ray and X-ray monitoring data with comparable sampling we cannot identify clear counterparts for the most significant flaring features observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical Journa

    The 2HWC HAWC Observatory Gamma Ray Catalog

    Full text link
    We present the first catalog of TeV gamma-ray sources realized with the recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the most sensitive wide field-of-view TeV telescope currently in operation, with a 1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an instantaneous field of view >1.5 sr and >90% duty cycle, it continuously surveys and monitors the sky for gamma ray energies between hundreds GeV and tens of TeV. HAWC is located in Mexico at a latitude of 19 degree North and was completed in March 2015. Here, we present the 2HWC catalog, which is the result of the first source search realized with the complete HAWC detector. Realized with 507 days of data and represents the most sensitive TeV survey to date for such a large fraction of the sky. A total of 39 sources were detected, with an expected contamination of 0.5 due to background fluctuation. Out of these sources, 16 are more than one degree away from any previously reported TeV source. The source list, including the position measurement, spectrum measurement, and uncertainties, is reported. Seven of the detected sources may be associated with pulsar wind nebulae, two with supernova remnants, two with blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa

    Nuclear rupture at sites of high curvature compromises retention of DNA repair factors.

    Get PDF
    The nucleus is physically linked to the cytoskeleton, adhesions, and extracellular matrix-all of which sustain forces, but their relationships to DNA damage are obscure. We show that nuclear rupture with cytoplasmic mislocalization of multiple DNA repair factors correlates with high nuclear curvature imposed by an external probe or by cell attachment to either aligned collagen fibers or stiff matrix. Mislocalization is greatly enhanced by lamin A depletion, requires hours for nuclear reentry, and correlates with an increase in pan-nucleoplasmic foci of the DNA damage marker γH2AX. Excess DNA damage is rescued in ruptured nuclei by cooverexpression of multiple DNA repair factors as well as by soft matrix or inhibition of actomyosin tension. Increased contractility has the opposite effect, and stiff tumors with low lamin A indeed exhibit increased nuclear curvature, more frequent nuclear rupture, and excess DNA damage. Additional stresses likely play a role, but the data suggest high curvature promotes nuclear rupture, which compromises retention of DNA repair factors and favors sustained damage
    corecore