4,388 research outputs found

    Globally enhanced calcification across the coccolithophore Gephyrocapsa complex during the mid-Brunhes interval

    Get PDF
    Evolutionary or adaptative changes in Noelaerhabdaceae coccolithophores occurred in parallel with major changes in carbonate export and burial during scenarios of low orbital eccentricity, with a ∼400 kyr recurrence, during the Pleistocene. Coeval with these conditions of enhanced proliferation, here we report that the calcification of specimens was enhanced at a global scale and across multiple species or morphotypes within the Gephyrocapsa complex during the Mid-Brunhes (MB) interval. This acme of increased production of organic and inorganic carbon by Gephyrocapsa, suggests that such global changes may originate from a common driver. Increased seawater alkalinity, with an appropriately long residence time, is proposed as environmental trigger on the selection of a wide variety of highly calcified and prolific Gephyrocapsa taxa. This new perspective highlights the role of orbital forcing in phytoplankton evolution or adaptation, via a global environmental driver in the form of seawater carbon chemistry. Our results fit with earlier proposals appealing for an intensified biological pump and respiration dissolution during this interval. We hypothesize that the Gephyrocapsa acme may play a double-edged role, by increasing shallow respiration dissolution rates, limiting the removal of alkalinity by burial, which may help to recycle alkalinity and maintain constant levels at the ∼400 kyr scale. This idea suggests the potential capacity of the Noelaerhabdaceae coccolithophore acmes to modify the typical behaviour of carbonate compensation in the ocean and that the changes in coccolithophore calcification may be indicative of changes in ocean carbonate chemistry and the operation of the global carbon cycle in the past

    The Development of a Virtual World Problem-Based Learning Tutorial and Comparison With Interactive Text-Based Tutorials

    Get PDF
    Collaborative learning through case-based or problem-based learning (PBL) scenarios is an excellent way to acquire and develop workplace knowledge associated with specific competencies. At St George's, University of London we developed an interactive online form of decision-based PBL (D-PBL) for our undergraduate medical course using web-based virtual patients (VPs). This method of delivery allowed students to consider options for clinical management, to take decisions and to explore the consequences of their chosen actions. Students had identified this as a more engaging type of learning activity compared to conventional paper-based/linear PBL and demonstrated improved exam performance in controlled trials. We explored the use of Second Life (SL), a virtual world and immersive 3D environment, as a tool to provide greater realism than our interactive image and text-based D-PBL patient cases. Eighteen separate tutorial groups were provided with their own experience of the same patient scenario in separate locations within the virtual world. The study found that whilst a minority of students reported that the Second Life experience felt more realistic, most did not. Students favored the simpler interaction of the web-based VPs, which already provided them with the essential learning needed for practice. This was in part due to the time proximity to exams and the extra effort required to learn the virtual world interface. Nevertheless, this study points the way towards a scalable process for running separate PBL sessions in 3D environments

    Changes in ponderal index and body mass index across childhood and their associations with fat mass and cardiovascular risk factors at age 15

    Get PDF
    Background: Little is known about whether associations between childhood adiposity and later adverse cardiovascular health outcomes are driven by tracking of overweight from childhood to adulthood and/or by vascular and metabolic changes from childhood overweight that persist into adulthood. Our objective is to characterise associations between trajectories of adiposity across childhood and a wide range of cardiovascular risk factors measured in adolescence, and explore the extent to which these are mediated by fat mass at age 15. Methods and Findings: Using data from the Avon Longitudinal Study of Parents and Children, we estimated individual trajectories of ponderal index (PI) from 0-2 years and BMI from 2-10 years using random-effects linear spline models (N = 4601). We explored associations between PI/BMI trajectories and DXA-determined total-body fat-mass and cardiovascular risk factors at 15 years (systolic and diastolic blood pressure, fasting LDL-and HDL-cholesterol, triglycerides, C-reactive protein, glucose, insulin) with and without adjustment for confounders. Changes in PI/BMI during all periods of infancy and childhood were associated with greater DXA-determined fat-mass at age 15. BMI changes in childhood, but not PI changes from 0-2 years, were associated with most cardiovascular risk factors in adolescence; associations tended to be strongest for BMI changes in later childhood (ages 8.5-10), and were largely mediated by fat mass at age 15. Conclusion: Changes in PI/BMI from 0-10 years were associated with greater fat-mass at age 15. Greater increases in BMI from age 8.5-10 years are most strongly associated with cardiovascular risk factors at age 15, with much of these associations mediated by fat-mass at this age. We found little evidence supporting previous reports that rapid PI changes in infancy are associated with future cardiovascular risk. This study suggests that associations between early overweight and subsequent adverse cardiovascular health are largely due to overweight children tending to remain overweight

    Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta)

    Get PDF
    In Greenland, free-living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory-based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold-room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO3 · g-1 · h-1 and -0.007 ±0.003 or -0.004 ± 0.001 mg O2 · L-1 · h-1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d-1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L. glaciale, and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.Peer reviewedFinal Accepted Versio

    On the similarity of Sturm-Liouville operators with non-Hermitian boundary conditions to self-adjoint and normal operators

    Get PDF
    We consider one-dimensional Schroedinger-type operators in a bounded interval with non-self-adjoint Robin-type boundary conditions. It is well known that such operators are generically conjugate to normal operators via a similarity transformation. Motivated by recent interests in quasi-Hermitian Hamiltonians in quantum mechanics, we study properties of the transformations in detail. We show that they can be expressed as the sum of the identity and an integral Hilbert-Schmidt operator. In the case of parity and time reversal boundary conditions, we establish closed integral-type formulae for the similarity transformations, derive the similar self-adjoint operator and also find the associated "charge conjugation" operator, which plays the role of fundamental symmetry in a Krein-space reformulation of the problem.Comment: 27 page

    The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study

    Get PDF
    BACKGROUND: Sedentary behaviours, defined as non exercising seated activities, have been shown to have deleterious effects on health. It has been hypothesised that too much sitting time can have a detrimental effect on bone health in youth. The aim of this study is to test this hypothesis by exploring the association between objectively measured volume and patterns of time spent in sedentary behaviours, time spent in specific screen-based sedentary pursuits and bone mineral content (BMC) accrual in youth. METHODS: NHANES 2005–2006 cycle data includes BMC of the femoral and spinal region via dual-energy X-ray absorptiometry (DEXA), assessment of physical activity and sedentary behaviour patterns through accelerometry, self reported time spent in screen based pursuits (watching TV and using a computer), and frequency of vigorous playtime and strengthening activities. Multiple regression analysis, stratified by gender was performed on N = 671 males and N = 677 females aged from 8 to 22 years. RESULTS: Time spent in screen-based sedentary behaviours is negatively associated with femoral BMC (males and females) and spinal BMC (females only) after correction for time spent in moderate and vigorous activity. Regression coefficients indicate that an additional hour per day of screen-based sitting corresponds to a difference of −0.77 g femoral BMC in females [95% CI: -1.31 to −0.22] and of −0.45 g femoral BMC in males [95% CI: -0.83 to −0.06]. This association is attenuated when self-reported engagement in regular (average 5 times per week) strengthening exercise (for males) and vigorous playing (for both males and females) is taken into account. Total sitting time and non screen-based sitting do not appear to have a negative association with BMC, whereas screen based sedentary time does. Patterns of intermittence between periods of sitting and moderate to vigorous activity appears to be positively associated with bone health when activity is clustered in time and inter-spaced with long continuous bouts of sitting. CONCLUSIONS: Some specific sedentary pursuits (screen-based) are negatively associated with bone health in youth. This association is specific to gender and anatomical area. This relationship between screen-based time and bone health is independent of the total amount of physical activity measured objectively, but not independent of self-reported frequency of strengthening and vigorous play activities. The data clearly suggests that the frequency, rather than the volume, of osteogenic activities is important in counteracting the effect of sedentary behaviour on bone health. The pattern of intermittence between sedentary periods and activity also plays a role in bone accrual, with clustered short bouts of activity interspaced with long periods of sedentary behaviours appearing to be more beneficial than activities more evenly spread in time
    corecore