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Abstract

We consider one-dimensional Schrödinger-type operators in a bounded
interval with non-self-adjoint Robin-type boundary conditions. It is well
known that such operators are generically conjugate to normal operators
via a similarity transformation. Motivated by recent interests in quasi-
Hermitian Hamiltonians in quantum mechanics, we study properties of
the transformations in detail. We show that they can be expressed as
the sum of the identity and an integral Hilbert-Schmidt operator. In the
case of parity and time reversal boundary conditions, we establish closed
integral-type formulae for the similarity transformations, derive the simi-
lar self-adjoint operator and also find the associated “charge conjugation”
operator, which plays the role of fundamental symmetry in a Krein-space
reformulation of the problem.
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1 Introduction

Let us consider the m-sectorial realization H of the second derivative operator

ψ 7→ −ψ′′ (1.1)

in the Hilbert space H := L2(−a, a), with a > 0, subjected to separated, Robin-
type boundary conditions

ψ′(±a) + c± ψ(±a) = 0 (1.2)

where c± are arbitrary complex numbers. The operator H is self-adjoint if,
and only if, the constants c± are real. The present paper is concerned with
the existence and properties of similarity transformations of H to a normal or
self-adjoint operator in the non-trivial case of non-real c±.

The similarity to the normal (respectively, self-adjoint) operator is under-
stood as the existence of a bounded operator Ω with bounded inverse such that

h := ΩHΩ−1 (1.3)

is normal (respectively, self-adjoint). We remark that this concept is equivalent
to the existence of a topologically equivalent inner product in H with respect
to which H is normal (respectively, self-adjoint). In addition to results on the
general structure of the similarity transformations, modified inner products, and
transformed operators, we present explicit closed formulae for these objects in
special cases of boundary conditions.

The operators of the type (1.1)–(1.2) have been studied from many aspects
and there exist a large number of known results; we particularly mention the
classical monograph of Dunford and Schwartz [11, Chapter XIX.3]. Recent years
brought new motivations and focused attention to some aspects of the problem
which attracted little attention earlier.

As an example, let us mention that one-dimensional Schrödinger operators
with non-Hermitian boundary conditions of the type (1.2) were used as a model
in semiconductor physics by Kaiser, Neidhardt and Rehberg [18]. In their paper
the imaginary parts of the constants c± are required to have opposite signs such
that the system is dissipative. The authors find the characteristic function
of the operators, construct its minimal self-adjoint dilation and develop the
generalized eigenfunction expansion for the dilation. See also [16, 17] for further
generalizations. Here the main idea of using non-self-adjointness comes from
embedding a quantum-mechanically described structure into a macroscopic flow
and regarding the system as an open one.

However, the principal motivation of the present work is the possibility of
giving a direct quantum-mechanical interpretation of non-Hermitian operators
which are similar to self-adjoint ones [29]. The most recent strong impetus to
this point of view comes from the so-called PT -symmetric quantum mechanics.
Here the reality of the spectrum of a class of non-Hermitian operators – caused
by certain symmetries rather than self-adjointness – suggests their potential
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relevance as quantum-mechanical Hamiltonians; see the review articles [4, 27].
It has been confirmed during the last years that it is indeed the case provided
that the similarity transformation to a self-adjoint operator can be ensured.
However, it is a difficult task.

Motivated by the lack of rigorous results, the authors of [21] introduced
a simple non-Hermitian PT -symmetric operator of the type (1.1)–(1.2) and
wrote down a closed formula for the (square of the) similarity transformation
(see also [20, 22]). Let us also mention that the importance of (not only) PT -
symmetric version of (1.1)–(1.2) in quantum mechanical scattering has been
recently established in [15].

The present paper can be regarded as a step further. In addition to consider-
ing more general situations of larger classes of boundary conditions and similar-
ity to normal operators, we provide an alternative and more elegant (integral-
kernel) formulae for the similarity transformations in the PT -symmetric sit-
uation. Moreover, we also give a remarkably simple formula for the similar
self-adjoint operator in this case. Finally, we succeed in finding the so-called
C-operator in a closed form, which plays the role of fundamental symmetry in
a Krein-space reformulation of the problem.

The paper is organised as follows. In Section 2 we give a precise definition
of the operator H , summarize its known properties and recall the general con-
cepts of quasi-Hermitian, PT -symmetric, and C-symmetric operators. Our main
results about the universal structure of the similarity transformations can be
found in Section 3. In Section 4 we show how these can be applied to particular
(PT -symmetric) classes of boundary conditions and we present some explicit
constructions of the studied objects. In Section 5 we discuss how the results can
be extended to bounded and even second-order perturbations of H . Our final
Section 6 presents a series of concluding remarks.

2 Preliminaries

We start with recalling general properties of H and concepts of similarity trans-
formations in Hilbert spaces.

2.1 Definition of the operator H

The standard norm in our Hilbert space H ≡ L2(−a, a) is denoted by ‖ · ‖.
The corresponding inner product is denoted by 〈·, ·〉 and it is assumed to be
antilinear in the first component.

We consider the m-sectorial realization H of the operator (1.1) subjected
to the boundary conditions (1.2) as the operator associated on H with the
quadratic form

tH [ψ] := ‖ψ′‖2 + c+|ψ(a)|2 − c−|ψ(−a)|2,
Dom(tH) :=W 1,2(−a, a).

(2.1)
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Note that the boundary terms are well defined because of the embedding of
the Sobolev space W 1,2(−a, a) in the space of uniformly continuous functions
C0[−a, a]. An elementary idea of the proof of the embedding can be also used
to show that the boundary terms represent a relatively bounded perturbation
of the form associated with the Neumann Laplacian (i.e., c± = 0). Since the
Neumann form is clearly non-negative and closed by definition of the Sobolev
space, we know that tH is a closed sectorial form by a standard perturbative
argument [19, Sec. VI.1.6].

By the representation theorem [19, Thm. VI.2.1] and an elementary version
of standard elliptic regularity theory, it is easy to see that

Hψ = −ψ′′,

Dom(H) =
{

ψ ∈W 2,2(−a, a) : ψ′(±a) + c±ψ(±a) = 0
}

.
(2.2)

We refer to [19, Ex. VI.2.16] for more details. The operator definition (2.2)
gives a precise meaning to (1.1)–(1.2).

2.2 Dirichlet and Neumann boundary conditions

This subsection is mainly intended to collect some notation we shall use later.
We have already mentioned that the special choice c± = 0 gives rise to

the Neumann Laplacian −∆N on H. The Dirichlet Laplacian −∆D on H can
be considered as the other extreme case by formally putting c± = +∞. It
is properly defined as the second derivative operator (1.1) with the operator
domain Dom (−∆D) :=W 2,2(−a, a) ∩W 1,2

0 (−a, a).
The spectrum of the Dirichlet and Neumann Laplacians in our one-dimen-

sional situation is well known:

σ(−∆D) = {k2n}∞n=1 ,

σ(−∆N ) = {k2n}∞n=0 ,
with kn :=

nπ

2a
.

The corresponding eigenfunctions are respectively given by

χD
n (x) :=

1√
a
sinkn(x+ a), χN

n (x) :=

{

1√
2a

if n = 0 ,
1√
a
cos kn(x + a) if n ≥ 1 .

(2.3)
To simplify some expressions in the sequel, we extend the notation by χD

0 := 0.
Next we introduce a “momentum” operator p and its adjoint p∗:

pψ := −iψ′, p∗ψ = −iψ′,

Dom(p) :=W 1,2
0 (−a, a), Dom(p∗) =W 1,2(−a, a).

(2.4)

The following identities hold:

ipχD
n = knχ

N
n , ip∗χN

n = −knχD
n ,

−∆D = p∗p, −∆N = pp∗.
(2.5)
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The resolvents (−∆D − k2)−1, (−∆N − k2)−1 act as integral operators with
simple kernels (Green’s functions) Gk

D and Gk
N , respectively:

Gk
D(x, y) =

− sin(k(x+ a)) sin(k(y − a))

k sin(2ka)
, x < y ,

Gk
N (x, y) =

− cos(k(x+ a)) cos(k(y − a))

k sin(2ka)
, x < y ,

(2.6)

with x, y exchanged for x > y. Here the spectral parameter k2 is supposed to
belong to the resolvent set of the respective operator.

For k = 0, the kernel of (−∆D)−1 simplifies to

G0
D(x, y) =

(x+ a)(a− y)

2a
, x < y , (2.7)

with x, y exchanged for x > y. The resolvent of −∆N does not exist for k = 0,

of course, but one can still introduce the reduced resolvent
(

−∆⊥
N

)−1
of the

Neumann Laplacian with respect to the eigenvalue 0 (see [19, Sec. III.6.5] for the
concept of reduced resolvent). From the point of view of the spectral theorem:

(

−∆⊥
N

)−1
=

∞
∑

n=1

1

k2n
χN
n 〈χN

n , ·〉. (2.8)

The corresponding integral kernel G⊥
N (x, y) can be obtained by taking the limit

k → 0 of the regularized expression Gk
N (x, y) + k−2χN

0 (x)χN
0 (y). We find

G⊥
N (x, y) =

(x+ a)2

4a
+

(y − a)2

4a
− a

3
, x < y , (2.9)

with x, y exchanged for x > y.
Finally, we introduce operators

J ι :=

∞
∑

n=0

C2
n χ

ι
n〈χι

n, ·〉 , ι ∈ {D,N} , (2.10)

where Cn are positive numbers satisfying

0 < m1 < Cn < m2 <∞ (2.11)

for all n ≥ 0, with given positive m1,m2. The sum in the definition (2.10), as
well as all other analogous expressions in the following, are understood as limits
in the strong sense.

2.3 General properties of H

Now we are in a position to recall some general properties of the operator H .
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Proposition 2.1 (General known facts).

(i) H is m-sectorial. The adjoint operator H∗ is obtained by taking the com-
plex conjugation of c± in the boundary conditions (1.2).

(ii) H forms a holomorphic family of operators of type (B) with respect to the
boundary parameters c±.

(iii) The resolvent of H is a compact operator.

(iv) H is a discrete spectral operator.

(v) If all eigenvalues are simple, then H is similar to a normal operator. If
the spectrum of H is in addition real, then H is similar to a self-adjoint
operator.

We have already shown that H is m-sectorial as the operator associated with
the closed sectorial form (2.2). The rest of the claim (i) follows by the fact that
the adjoint operator is associated with the adjoint form t∗H(φ, ψ) := tH(ψ, φ)
(cf. [19, Thm. VI.2.5]). Property (ii) follows from (2.2) as well if we recall that
the boundary terms represent a relatively bounded perturbation of the form
associated with the Neumann Laplacian and the relative bound can be made
arbitrarily small (cf. [19, Sec. VII.4.3]). This also proves (iii) as a consequence
of the perturbation result [19, Sec. VI.3.4]. The proof of (iv) is contained in [11,
Chapter XIX.3]. Property (v) is a consequence of (iv).

The similarity to a normal operator can be equivalently stated as the Riesz
basicity of the eigenvectors ofH . This property is shared by all second derivative
operators with strongly regular boundary conditions, see [26]. Using the notion
of spectral operator, this has been investigated in [11] as well.

Although the eigenvalues of H are generically simple, degeneracies may ap-
pear. However, the only possibility are the eigenvalues of algebraic multiplicity
two and geometric multiplicity one. In this case, operator H cannot be sim-
ilar to a normal one, nevertheless, the eigenvectors together with generalized
eigenvectors still form a Riesz basis.

Now we turn to symmetry properties of H .

Definition 2.1 (PT -symmetry). We say that H is PT -symmetric if

[PT , H ] = 0, (2.12)

where
(Pψ)(x) := ψ(−x), (T ψ)(x) := ψ(x). (2.13)

It should be stressed that PT is an antilinear operator. The commutator
relation (2.12) means precisely that (PT )H ⊂ H(PT ), as usual for the commu-
tativity of an unbounded operator with a bounded one (cf. [19, Sec. III.5.6]). In
the quantum-mechanical context, P corresponds to the parity inversion (space
reflection), while T is the time reversal operator.
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Definition 2.2 (S-self-adjointness). We say that H is S-self-adjoint if the re-
lation H = S−1H∗S holds with a boundedly invertible operator S.

We will use this concept in a wide sense, with S being either linear or anti-
linear operator. If S is a conjugation operator (i.e. antilinear involution), then
our definition coincides with the concept of J-self-adjointness [12, Sec. III.5].

While Definition 2.2 is quite general, Definition 2.1 makes sense for operators
in a complex functional Hilbert space only. In our case, we have:

Proposition 2.2 (Symmetry properties).

(i) H is T -self-adjoint.

(ii) H is P-self-adjoint if, and only if, c− = −c+.

(iii) H is PT -symmetric if, and only if, c− = −c+.

Property (ii) coincides with the notion of self-adjointness in the Krein space
equipped with the indefinite inner product 〈·,P·〉. It is also referred to as P-
pseudo-Hermiticity in physical literature (see, e.g., [27]).

It follows from Proposition 2.2.(i) that the residual spectrum of H is empty
(cf. [7, Corol. 2.1]). Alternatively, it is a consequence of Proposition 2.1.(iii),
which in addition implies that the spectrum of H is purely discrete.

We denote the (countable) set of eigenvalues of H by {λn}∞n=0 and the corre-
sponding set of eigenfunctions by {ψn}∞n=0. Similarly, let {λn}∞n=0 and {φn}∞n=0

be the set of eigenvalues and eigenfunctions of the adjoint operator H∗. That is

Hψn = λnψn, H∗φn = λnφn. (2.14)

Eigenfunctions ψn and φm corresponding to different eigenvalues, i.e. λn 6= λm,
are clearly orthogonal. Solving the eigenvalue equation for H in terms of sine
and cosine functions, it is straightforward to reduce the boundary value problem
to an algebraic one.

Proposition 2.3 (Spectrum). The eigenvalues λn = l2n of H are solutions of
the implicit equation

sin(2al)(c−c+ + l2) + (c− − c+)l cos(2al) = 0 . (2.15)

The corresponding eigenfunctions of H and H∗ respectively read

ψn(x) = An
1√
a

(

cos(ln(x+ a))− c−
ln

sin(ln(x+ a))

)

,

φn(x) =
1√
a

(

cos(ln(x+ a))− c−

ln
sin(ln(x+ a))

)

.

(2.16)

If all eigenvalues are simple, ψn can be normalized through the coefficients An

in such a way that 〈ψn, φm〉 = δnm.
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The spectrum ofH has been described more explicitly for the PT -symmetric
case. First of all, as a consequence of the symmetry, we know that the spectrum
is symmetric with respect to the real axis. In the following proposition we
summarize more precise results obtained in [21, 22].

Proposition 2.4 (PT -symmetric spectrum). Let c± = iα± β, with α, β ∈ R.

1. If β = 0 then all eigenvalues of H are real,

λ0 = α2, λn = k2n, n ∈ N. (2.17)

The corresponding eigenfunctions of H and H∗ respectively read

ψ0(x) = A0e
−iα(x+a), ψn(x) = An

(

χN
n (x)− i

α

kn
χD
n (x)

)

,

φ0(x) =
1√
2a

eiα(x+a), φn(x) = χN
n (x) + i

α

kn
χD
n (x).

(2.18)

If α 6= kn for every n ∈ N, then all the eigenvalues are simple and choosing

A0 :=
αe2iαa

√
2a

sin(2αa)
, An :=

k2n
k2n − α2

, (2.19)

we have the biorthonormal relations 〈ψn, φm〉 = δnm.

2. If β > 0, then all the eigenvalues of H are real and simple.

3. If β < 0, then all the eigenvalues are either real or there is one pair of
complex conjugated eigenvalues with real part located in the neighborhood
of α2 + β2.

In any case, the eigenvalue equation (2.15) can be rewritten as

(l2 − α2 − β2) sin(2al)− 2βl cos(2al) = 0. (2.20)

2.4 Concept of the metric operator

We recall the concept of metric operator (or quasi-Hermitian operators intro-
duced in [9]), widely used in PT -symmetric literature.

Definition 2.3 (Metric operator and quasi-Hermiticity). Bounded positive 1

operator Θ with bounded inverse is called a metric operator for H, if H is Θ-
self-adjoint. H is then called quasi-Hermitian.

It is obvious that the quasi-Hermitian operatorH is self-adjoint with respect
to the modified inner product 〈·, ·〉Θ := 〈·,Θ·〉. It is also not difficult to show
that the metric operator exists if, and only if, H is similar to a self-adjoint

1A is positive if 〈f, Af〉 > 0 for all f ∈ H, f 6= 0.
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operator. Moreover, since H has purely discrete spectrum, the metric operator
can be obtained as

Θ =

∞
∑

n=0

C2
n φn〈φn, ·〉, (2.21)

where φn are eigenfunctions of H∗ and Cn are real constants satisfying (2.11).
The expression (2.21) illustrates a non-uniqueness of the metric operator

caused by the arbitrariness of Cn. The latter can be actually viewed as a
modification of the normalization of functions φn. Choosing different sequences
{Cn}∞n=0, we obtain all metric operators for H , cf. [31, 33].

It is important to stress that if we define an operator Θ by (2.21), we find
that such Θ is bounded, positive, and with bounded inverse whenever {φn}∞n=0

is a Riesz basis. Thus, by virtue of Proposition 2.1.(v), such a Θ exists if,
and only if, all eigenvalues of H are simple. However, the Θ-self-adjointness
of H is satisfied if, and only if, the spectrum of H is real. Otherwise, only
ΘHΘ−1H∗ = H∗ΘHΘ−1 holds, cf. [33], which is equivalent to the fact that H
is similar to a normal operator.

In the following, the operator Θ is always defined by (2.21) regardless if it
is a metric operator for H in view of Definition 2.3.

It should be also noted that Θ, as a positive operator, can be always decom-
posed to

Θ = Ω∗Ω. (2.22)

One example of such Ω is obviously
√
Θ. We shall take the advantage of some

different decompositions of the type (2.22) later. It follows easily from Defini-
tion 2.3 that the similar operator h defined by (1.3) with Ω given by (2.22) is
self-adjoint if Θ is a metric operator for H . If all eigenvalues of H are simple
but no longer entirely real, h is (only) a normal operator.

2.5 Concept of the C operator

For PT -symmetric operators, the notion of C operator was introduced in [6] and
formalized in [2]. It was observed in [25] and in many works after that paper that
Krein spaces provide suitable framework for studying PT -symmetric operators.
Indeed, PT -symmetric operators which are at the same time P-self-adjoint are
in fact self-adjoint in the Krein space equipped with the indefinite inner product
〈·,P·〉. Recall that our operator H is P-self-adjoint if, and only if, it is PT -
symmetric (cf. Proposition 2.2).

Definition 2.4 (C operator). Assume that H is P-self-adjoint ( cf. Proposi-
tion 2.2). We say that H possesses the property of C-symmetry, if there exists
a bounded linear operator C such that [H, C] = 0, C2 = I, and PC is a metric
operator for H.

Thus, from the point of view of metric operators, we can find the C operator
as C := PΘ for Θ satisfying (PΘ)2 = I. Hence C-symmetry allows us to
naturally choose a metric operator. Besides a possible physical interpretation
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of C discussed in [5, 4], it appears naturally in the Krein spaces framework as
pointed out in [23, 24] as a fundamental symmetry of the Krein space (H, 〈·,P·〉)
with an underlying Hilbert space (H, 〈·,PC·〉).

3 General results

In this section we provide general properties of the metric operator Θ defined
in (2.21) and its decompositions Ω from (2.22).

Let {ψn}∞n=0 and {φn}∞n=0 denote the set of eigenvectors of H and H∗,
respectively. We assume that ψn and φn form Riesz bases and that they are
normalized in such a way that 〈ψn, φm〉 = δmn. In view of Propositions 2.1, 2.3,
we know that this is satisfied if all the eigenvalues of H are simple, which is a
generic situation.

Let {en}∞n=0 be any orthonormal basis of H. If all eigenvalues of H are
simple, we introduce an operator Ω by

Ω :=

∞
∑

n=0

en〈φn, ·〉. (3.1)

Clearly, Ω : ψn 7→ en.
Ω is defined only if all eigenvalues are simple, however, sometimes it is pos-

sible to extend it by continuity, see examples in Section 4. Nonetheless, such
Ω is typically not invertible and the dimension of the kernel corresponds to the
size of Jordan blocks appearing in the spectrum of H .

Basic properties of Ω are summarized in the following.

Lemma 3.1. Let all eigenvalues of H be simple. Then Ω is a bounded operator
with bounded inverse given by

Ω−1 =
∞
∑

n=0

ψn〈en, ·〉, (3.2)

i.e. Ω−1 : en 7→ ψn. The adjoint of Ω reads

Ω∗ =

∞
∑

n=0

φn〈en, ·〉. (3.3)

i.e. Ω∗ : en 7→ φn and Ω∗Ω = Θ, where Θ is defined in (2.21) with Cn = 1.

Furthermore, we show how the operator Ω can be realized.

Theorem 3.2. Let all eigenvalues of H be simple. Ω can be expressed as

Ω = U + L, (3.4)

where U :=
∑∞

n=0 en〈χN
n , ·〉, i.e. U : χN

n 7→ en, is a unitary operator, and L is a
Hilbert-Schmidt operator.
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Proof. At first we remark that it suffices to prove that Ω = I + L̃ for en :=
χN
n , where L̃ is Hilbert-Schmidt. More precisely, if we compose U from the

claim and I + L̃, we obtain Ω in (3.4) since L = UL̃ is Hilbert-Schmidt too.
Thus, we consider this choice of en in the following. Furthermore, we put a :=
π/2 for simplification of the formulae. This specific choice is in fact harmless,
since we can easily transfer the results for different a using the isometry V :
L2(−π/2, π/2) → L2(−a, a) defined by ψ(x) 7→

√

π
2aψ(

πx
2a ).

The asymptotic analysis of eigenvalues of H in [11, proof of Lem. XIX.3.10]
shows that

ln = n+
c+ − c−
πn

+O(n−2),

λn ≡ l2n = k2n +
2(c+ − c−)

π
+O(n−1),

(3.5)

and |Im (ln)| is uniformly bounded in n. These formulae are valid except for a
finite number N0 of eigenvalues.

We set εn := ln − kn = ln − n. Using elementary trigonometric identities,
we rewrite the eigenfunctions φn as follows

φn(x) = χN
n (x) cos (εn(x+ a))− χD

n (x) sin (εn(x+ a))

− c−

ln

[

χD
n (x) cos(εn(x + a)) + χN

n (x) sin (εn(x+ a))
]

.
(3.6)

We further rewrite the cosine and sine functions in this expression as

cos (εn(x+ a)) = 1 + εn
2 cos (εn(x+ a))− 1

εn
2 =: 1 + εn

2 cn(x),

sin (εn(x+ a)) = εn
sin (εn(x+ a))

εn
=: εn sn(x).

(3.7)

Note that ‖cn‖ and ‖sn‖ are uniformly bounded in n because of the properties
of εn. The building block χN

n 〈φn, ·〉 of Ω then becomes

χN
n 〈φn, ·〉 = χN

n 〈χN
n , ·〉+ ε2nχ

N
n 〈χN

n cn, ·〉 − εnχ
N
n 〈χD

n sn, ·〉
− c−
ln

(

χN
n 〈χD

n , ·〉+ ε2nχ
N
n 〈χD

n cn, ·〉+ εnχ
N
n 〈χN

n sn, ·〉
)

.
(3.8)

Taking the sum of χN
n 〈φn, ·〉 as in (3.1), we obviously get Ω = I + L̃.

It remains to show that the Hilbert-Schmidt norm ‖L̃‖HS of L̃ is finite. We
will understand L̃ as a sum L̃ = L̃N0

+ L̃∞, where

L̃N0
:=

N0−1
∑

n=0

χN
n 〈φ̃n, ·〉, L̃∞ :=

∞
∑

n=N0

χN
n 〈φ̃n, ·〉, (3.9)

and φ̃n := φn − χN
n . L̃N0

is a finite rank operator, hence it is automatically
Hilbert-Schmidt and it suffices to consider L̃∞ in the rest of the proof. We
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estimate explicitly only one term in the expression for ‖L̃∞‖2HS, the rest follows
in a similar way:

∞
∑

p=0

〈 ∞
∑

n=N0

εnχ
N
n

〈

χD
n sn, χ

N
p

〉

,

∞
∑

m=N0

εmχ
N
m

〈

χD
msm, χ

N
p

〉

〉

=
∞
∑

p=0

∞
∑

n=N0

|εn|2
∣

∣

〈

χD
n sn, χ

N
p

〉∣

∣

2 ≤ 1

a

∞
∑

n=N0

|εn|2‖sn‖2 <∞.

(3.10)

Here the first inequality follows by the Bessel inequality (after interchanging the
order of summation, which is justified) and by estimating χD

n by its supremum
norm. The asymptotic behavior of εn and the uniform boundedness of ‖sn‖ are
used in the last step.

Corollary 3.3. Let all eigenvalues of H be simple. Then

Θ := Ω∗Ω = I +K (3.11)

coincides with Θ defined in (2.21) with Cn = 1. Here K is a Hilbert-Schmidt
operator that can be realized as an integral operator with a kernel belonging to
L2((−a, a)× (−a, a)).

Proof. The claim follows from Theorem 3.2 and the well-known facts that
Hilbert-Schmidt operators are *-both-sided ideal in the space of bounded oper-
ators and can be realized as integral ones, see [28, Thm.VI.23].

Remark 3.1. Slight modification of the definition of Ω and the proof of The-
orem 3.2 yields the analogous result for operators Θ defined in (2.21) with
arbitrary Cn. It suffices to consider fn := Cnen instead of en. The resulting
form is

Θ = JN + K̃, (3.12)

where JN is defined in (2.10) and K̃ is again a Hilbert-Schmidt operator. JN it-
self, however, can be a sum of a bounded and a Hilbert-Schmidt operator, as
we shall see in examples.

Proposition 3.4. Let S be an open connected set in C2 such that for all
(c−, c+) ∈ S all eigenvalues of H are simple. Then Ω and thereby Θ are bounded
holomorphic families in S with respect to parameters c±.

Proof. We verify the criterion stated in [19, Sec. VII.1.1]. We have proved
already that Ω is bounded. It remains to show that 〈f,Ωg〉 is holomorphic for
every f, g from a fundamental set of H that we choose as the orthonormal basis
{en}∞n=0. 〈em,Ωen〉 = 〈φm, en〉 is holomorphic because φm is an eigenfunction
of the operator H∗, which can be viewed as a holomorphic family of operators
of type (B) with respect to the parameters c±.

Corollary 3.5. Assume the hypothesis of Proposition 3.4. Then h := ΩHΩ−1

is a holomorphic family of operators in S with respect to parameters c±.

12



Since the operator H is a holomorphic family of type (B), i.e. it is naturally
defined via quadratic forms with the domain W 1,2(−a, a) independent of the
parameters c±, h is expected to possess a similar property. To prove it, we
have to particularly show that the associated quadratic forms corresponding
to different values of c± have the same domain, which is not guaranteed by
Corollary 3.5. To this end we analyse the quadratic form associated to h, where
we set en := χN

n in the definition of Ω.

Theorem 3.6. Let all eigenvalues of H be simple and let en := χN
n in (3.1).

Then Ω = I + L and Ω−1 = I +M , where L, M are Hilbert-Schmidt opera-
tors. Ω,Ω∗,Ω−1, (Ω−1)∗ are bounded operators onW 1,2(−a, a) andW 2,2(−a, a).
Furthermore, the following estimates hold for all φ ∈W 1,2(−a, a) and arbitrary
δ > 0:

‖(L∗φ)′‖2 ≤ C
(

δ‖φ′‖2 + δ−2‖φ‖2
)

,

‖(Mφ)′‖2 ≤ C
(

δ‖φ′‖2 + δ−2‖φ‖2
)

,
(3.13)

with C being constants not dependent on δ and φ.

Proof. We set a := π/2 as in the proof of Theorem 3.2. M is Hilbert-Schmidt
since I = ΩΩ−1 = I + L+M + LM and L is Hilbert-Schmidt.

We consider Ω∗ at first. Following the proof of Theorem 3.2, L∗ can be
written as

L∗f =
∞
∑

k=0

φ̃k〈χN
k , f〉, (3.14)

where φ̃k := φk −χN
k and f ∈ H. We show that L∗ is bounded on W 1,2(−a, a).

We estimate the Hilbert-Schmidt norm of L∗ on W 1,2(−a, a) with help of the
orthonormal basis fn := χN

n /
√
1 + n2. In fact, it suffices to estimate:

∞
∑

n=0

〈(L∗fn)
′, (L∗fn)

′〉 =
∞
∑

n=0

1

1 + n2
‖φ̃′n‖2 (3.15)

where (recall (3.6) and (3.7))

φ̃′n = −nεn2 χD
n cn − εn

2 χN
n sn − nεn χ

N
n sn − εn χ

D
n (1 + εn

2 cn)

+ c−
[

χN
n (1 + εn

2 cn)− εn χ
D
n sn

]

.
(3.16)

Using the asymptotic properties of εn and the uniform boundedness of cn, sn
(see (3.5) and (3.7), respectively) together with the normalization of χι

n, we
conclude that ‖φ̃′n‖ ≤ C uniformly in n. Therefore (3.15) is finite.

Using the same technique, we can show that the Hilbert-Schmidt norm of L∗

in W 2,2(−a, a) is finite. To this end we select the basis χN
n /

√
1 + n2 + n4, the

rest is based on ‖φ̃′′n‖ = O(n) as n→ ∞.
Let us now establish the inequalities (3.13). Consider φ ∈ W 1,2(−a, a), its

basis decomposition φ =
∑∞

n=0 αnχ
N
n , and the identity

∞
∑

n=0

|nαn|2 = ‖φ′‖2. (3.17)
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Hence,

‖(L∗φ)′‖2 =

∞
∑

m,n=0

αmαn〈φ̃′m, φ̃′n〉, (3.18)

and having the explicit form of φ̃′n, see (3.16), we have to estimate several terms.
We show the technique only for one term, the estimate of remaining terms is
analogous. First, using the uniform boundedness of ‖cn‖, ‖sn‖, the asymptotics
εn = O(n−1) and the uniform boundedness of ‖χN

n ‖∞, it is easy to see that

∞
∑

m,n=0

mn |αm||αn||εm||εn||〈χN
msm, χ

N
n sn〉| ≤ C

( ∞
∑

n=1

|αn|
)2

holds with some positive constant C. It remains to estimate the l1-norm of αn

by the l2-norms of αn and nαn (which equal ‖φ‖ and ‖φ′‖, respectively). This
is rather algebraic:

( ∞
∑

n=1

|αn|
)2

=

( ∞
∑

n=1

(

|αn|n
)b |αn|1−b n−b

)2

≤
( ∞
∑

n=1

|αn|2 n2

)b( ∞
∑

n=1

|αn|2
)1−b( ∞

∑

n=1

n−2b

)

≤ Cb ‖φ′‖2b ‖φ‖2(1−b)

≤ Cb

(

b δ ‖φ′‖2 + (1− b) δ−
b

1−b ‖φ‖2
)

,

with any b, δ ∈ (0, 1). Here the first inequality follows by the generalized Hölder
inequality and the last one is a consequence of the Young inequality. The ex-
ponent b is chosen in such a way that 2b > 1, so that the sum of n−2b (denoted
by Cb) converges. If we put b = 2/3, we obtain the inequality in the claim.

One can show, using the asymptotics (3.5), that it follows from the normal-
ization requirement 〈φn, ψn〉 = 1 that An, the normalization constants of ψn,
see (2.16), satisfy An = 1 + O(n−1). Then the claims for Ω−1 and M can be
derived in the same manner.

To justify that Ω and (Ω−1)∗ are bounded on W 1,2(−a, a) and W 2,2(−a, a),
it suffices to realize that Ω−1 and Ω∗ are invertible because they are invertible in
L2(−a, a) and the inverse is bounded because of the form identity plus compact
operator on considered Sobolev spaces.

Corollary 3.7. Assume the hypotheses of Theorem 3.6. Then h := ΩHΩ−1 is
a holomorphic family of operators of type (B) with respect to c±. The associated
quadratic form th, in the sense of the representation theorem [19, Thm. VI.2.1],
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reads

th[ψ] = ‖ψ′‖2 + 〈(L∗ψ)′, ψ′〉+ 〈ψ′, (Mψ)′〉+ 〈(L∗ψ)′, (Mψ)′〉

+ c+

[

(

ψ(a) + (L∗ψ)(a)
)(

ψ(a) + (Mψ)(a)
)

]

− c−
[

(

ψ(−a) + (L∗ψ)(−a)
)(

ψ(−a) + (Mψ)(−a)
)

]

,

Dom(th) =W 1,2(−a, a).

(3.19)

Proof. The form th defined in (3.19) is sectorial and closed due to the perturba-
tion result [19, Thm. VI.1.33], regarding u[ψ] := th[ψ]−‖ψ′‖2 as a perturbation
of t0[ψ] := ‖ψ′‖2. Indeed, the inequalities (3.13) applied on u[ψ] yield that u is
t0-bounded with t0-bound 0. Therefore, due to the first representation theorem
[19, Thm. VI.2.1], there is a unique m-sectorial operator associated with th. Let
us denote it by h̃. Our objective is to show that h̃ = h.

Using the definition of h by the similarity transformation, i.e. h = ΩHΩ−1,
and the fact that H is associated to tH , we know that the domain of h are
functions u such that, firstly, Ω−1u ∈ W 1,2(−a, a) and, secondly, there exists
w ∈ L2(−a, a) such that

tH(Ω∗v,Ω−1u) = (v, w) (3.20)

for all v such that Ω∗v ∈ W 1,2(−a, a). However, by Theorem 3.6, Ω, Ω∗, Ω−1,
(Ω∗)−1 are bounded on W 1,2(−a, a) and it is easy to check that the identity

tH(Ω∗v,Ω−1u) = th(v, u) (3.21)

holds for all u, v ∈ W 1,2(−a, a). Consequently, the operators h̃ and h indeed
coincide.

Remark 3.2. We remark that the boundedness of Ω, Ω∗, Ω−1 and (Ω−1)∗ in
W 2,2(−a, a) was not used in the proof Corollary 3.7. Nevertheless, this property
is useful if we analyse the domain of h directly from the relation h = ΩHΩ−1. It
follows that Dom (h) consists of functions ψ fromW 2,2(−a, a) satisfying bound-
ary conditions (Ω−1ψ)′(±a) + c±(Ω−1ψ)(±a) = 0.

4 Closed formulae in PT -symmetric cases

We present closed formulae of operators Θ, Ω and h corresponding to H with
special PT -symmetric choice of boundary conditions, c± := iα, with α ∈ R.
This case has already been studied in a similar context in [21, 20], where the
first formulae of the metric Θ were given. We substantially generalize these
results here.

We essentially rely on the original idea of [20] to “use the spectral theorem
backward” to sum up the infinite series appearing in the definition of Θ in (2.21).
The attempts to find Ω as the square root of Θ using the holomorphic and
self-adjoint calculus are contained in [35, 34], however, only approximations
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of the resulting similar self-adjoint operator h were found there. The main
novelty of the present approach comes from the more general factorization (2.22)
with (3.1), which enables us to obtain exact results. Formulae contained in this
section are obtained by tedious although straightforward calculations that we
do not present entirely.

Finally, we present the metric operator for H with general PT -symmetric
boundary conditions, c± := iα ± β. In this case, the eigenvalues are no longer
explicitly known, nevertheless, the experience from previous examples and for-
mulation of partial differential equation together with a set of “boundary con-
ditions” for the kernel of the integral operator provide the correct result.

4.1 Reduction to finding a Neumann metric

We start with the following fundamental result.

Proposition 4.1. Let c± := iα, with α ∈ R. Then the operator Θ defined
in (2.21) has the form

Θ = JN + C2
0 θ1 + JNθ2 + JDθ3, (4.1)

where J ι, with ι ∈ {D,N}, are defined in (2.10), C0 > 0, and θi are integral
operators with kernels:

θ1(x, y) :=
i

a
e

iα

2
(x−y) sin

(α

2
(x− y)

)

,

θ2(x, y) :=
iα

2a

[

y − a sgn(y − x)
]

,

θ3(x, y) :=
α2

2a

(

a2 − xy
)

− iα

2a
x− iα

2

[

1− iα(y − x)
]

sgn(y − x).

(4.2)

Θ is the metric operator for H, see Definition 2.3, if, and only if, α 6= kn for
every n ∈ N.

Proof. Using the explicit form (2.18) of functions φn and the definition (2.21)
of Θ, we obtain

Θ =
∞
∑

n=0

C2
nχ

N
n 〈χN

n , ·〉+ C2
0

(

φ0〈φ0, ·〉 − χN
0 〈χN

0 , ·〉
)

+ α2
∞
∑

n=1

C2
n

k2n
χD
n 〈χD

n , ·〉+ iα

∞
∑

n=1

C2
n

kn
χD
n 〈χN

n , ·〉 − iα

∞
∑

n=1

C2
n

kn
χN
n 〈χD

n , ·〉.

(4.3)
Employing the operators J ι and p, p∗ introduced in (2.10) and (2.4), respectively,
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and relations (2.5) we obtain:

Θ = JN
∞
∑

n=0

χN
n 〈χN

n , ·〉+ C2
0

(

φ0〈φ0, ·〉 − χN
0 〈χN

0 , ·〉
)

+ αJNp

∞
∑

n=1

1

k2n
χD
n 〈χD

n , ·〉

+ JD

(

α2
∞
∑

n=1

1

k2n
χD
n 〈χD

n , ·〉+ αp∗
∞
∑

n=1

1

k2n
χN
n 〈χN

n , ·〉
)

.

(4.4)

It follows from the functional calculus for self-adjoint operators that (4.4) can
be written as

Θ = JN + C2
0

(

φ0〈φ0, ·〉 − χN
0 〈χN

0 , ·〉
)

+ αJNp(−∆D)−1

+ JD
[

α2(−∆D)−1 + αp∗(−∆⊥
N )−1

]

.
(4.5)

By inserting the explicit integral kernels of the resolvents, see Section 2.2, we
obtain the formula (4.1) with (4.2).

To ensure that such Θ represents as metric operator, we recall that the
spectrum of H is always real, see Proposition 2.4. Moreover, it is simple if, and
only if, the condition in the last claim is satisfied.

Remark 4.1. The formula (4.1) can be rewritten in terms of the operator JN

only. Indeed, it is possible to show that

JD = p∗JNp(−∆D)−1. (4.6)

The final result is then

Θ = JN + C2
0θ1 + JNθ2 + p∗JNθ4, (4.7)

where θ4 := p(−∆D)−1θ3 is an integral operator with kernel

θ4(x, y) =
α

12a

(

y2(3− iαy) + 3x2(1− iαy) + 2a2
[

1 + iα(3x− y)
]

)

− 1

4
α

(

2− iα(y − x)

)

(y − x) sgn(y − x).

(4.8)

Note that the expression (4.8) is a result of a rather lengthy computation.

Any metric operator for H in Proposition 4.1 can be obtained by determin-
ing JN for given constants Cn. Thus we managed to transform the problem of
constructing the metric operators for non-self-adjoint operator H to the prob-
lem of constructing the metric operators JN for the Neumann Laplacian −∆N .
This significantly simplifies the problem, since −∆N is self-adjoint and its met-
ric operators are bounded, positive operators with bounded inverse commuting
with −∆N . For instance, any bounded, uniformly positive function of −∆N
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represents a metric operator. Moreover, it was shown in [34] that any JN can
be approximated in the strong sense by a polynomial of I + λ(−∆N − λ)−1,
with λ ∈ ρ(−∆N ).

We consider two choices of constants Cn in the following and we find final
formulae for the corresponding metric operators.

4.2 The constant-coefficients metric

Let C2
n := 1 for every n ≥ 0. Then JN = JD = I and the metric operator Θ

reads Θ = I +K, where K is an integral operator with the kernel

K(x, y) =
i

a
ei

α

2
(x−y) sin

(α

2
(x− y)

)

+
iα

2a

(

|y − x| − 2a
)

sgn(y − x)

+
α2

2a

(

a2 − xy − a|y − x|
)

.

(4.9)

Formula (4.9) represents a remarkably elegant form for the metric operator
found firstly in [21, 20].

4.3 The C operator

Another choice of Cn is motivated by the concept of C operator, see Defini-
tion 2.4. We want to find such Θ that C2 = I, where C = PΘ. Since H is
P-self-adjoint, we have Pφn = Dnψn with some numbers Dn. Assuming the
non-degeneracy condition α 6= kn for every n ≥ 0, an explicit calculation shows
that

D0 =
sin(2αa)

2αa
, Dn = (−1)n

k2n − α2

k2n
, n ∈ N. (4.10)

The condition (PΘ)2 = I then restricts Cn from (2.21) to

C2
0 =

2|α|a
| sin(2αa)| , C2

n =
k2n

|k2n − α2| , n ∈ N. (4.11)

In order to simplify the formulae, we consider only α ∈ (0, k1) in the following.

Remark 4.2. As mentioned below (2.21), any choice of Cn can be interpreted
as a sort of normalisation of φn. It is therefore interesting to notice that (4.11)
results into the symmetric normalization of φn and ψn when 〈φn, ψn〉 = 1 is
required:

ψ0(x) =

√

α

sin(2αa)
eiαae−iαx, ψn(x) =

kn
√

k2n − α2

(

χN
n (x)− i

α

kn
χD
n (x)

)

,

φ0(x) =

√

α

sin(2αa)
eiαaeiαx, φn(x) =

kn
√

k2n − α2

(

χN
n (x) + i

α

kn
χD
n (x)

)

.

These expressions should be compared with the normalization of (2.18)–(2.19),
standardly used in the present paper. The symmetric form of the “present
normalization” indicates that the choice (4.11) will lead to a simpler form of Θ
than (4.9).
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Using (4.11) in the series (2.10), the operators J ι can be determined by the
functional calculus:

JN =

∞
∑

n=0

k2n
k2n − α2

χN
n 〈χN

n , ·〉+ C2
0 χ

N
0 〈χN

0 , ·〉

= (−∆N )(−∆N − α2)−1 + C2
0 χ

N
0 〈χN

0 , ·〉
= I + α2(−∆N − α2)−1 + C2

0 χ
N
0 〈χN

0 , ·〉,

JD =

∞
∑

n=1

k2n
k2n − α2

χD
n 〈χD

n , ·〉

= (−∆D)(−∆D − α2)−1

= I + α2(−∆D − α2)−1.

(4.12)

A direct (but very tedious) way how to derive the metric Θ for the choice (4.11)
is to express the resolvents of the Dirichlet and Neumann Laplacians from the
ultimate expressions in (4.12) by means of the Green’s functions (2.6) and com-
pose them with the operators θi in (4.1).

However, a more clever way how to proceed is to come back to the operator
form (4.5) and perform first some algebraic manipulations with the interme-
diate expressions appearing in (4.12). First, we clearly have JD(−∆D)−1 =
(−∆D − α2)−1. Second, employing (2.4) and the identity (−∆N )(−∆⊥

N )−1 =
I − χN

0 〈χN
0 , ·〉, we check

[

JDp∗(−∆⊥
N )−1

]∗
= p(−∆D − α2)−1,

[

JNp(−∆D)−1
]∗

= p∗(−∆N − α2)−1.

Finally, again using (2.4), we verify the intertwining relation [p(−∆D−α2)−1]∗ =
p∗(−∆N − α2)−1. Summing up, with our choice (4.11), formula (4.5) simplifies
to

Θ = I + C2
0 φ0〈φ0, ·〉+ α2(−∆N − α2)−1 + α2(−∆D − α2)−1

+ αp(−∆D − α2)−1 + αp∗(−∆N − α2)−1.
(4.13)

Now it is easy to substitute (2.6) and after elementary manipulations to conclude
with Θ = I +K, where K is an integral operator with the kernel

K(x, y) = α e−iα(y−x)
[

tan(αa)− i sgn(y − x)
]

. (4.14)

The operator C can be found easily by composing P and Θ. We finally arrive
at the formula C = P + L, where L is an integral operator with the kernel

L(x, y) = α e−iα(y+x)
[

tan(αa)− i sgn(y + x)
]

. (4.15)

4.4 The similar self-adjoint operator

Next we present an example of operator Ω, defined in (3.1) with en := χN
n , that

will be used to find the similar self-adjoint operator h from (1.3). We recall
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that the similarity transformation Ω is invertible if all the eigenvalues of H are
simple, which is ensured by the condition α 6= kn for every n ∈ N. We will
actually search for the quadratic form associated to h for which we have the
result in Corollary 3.7.

We follow the analogous strategy to obtain formula for Ω as in the proof of
Proposition 4.1. The definition of Ω with en := χN

n leads to the sum:

Ω = χN
0 〈φ0, ·〉+

∞
∑

n=1

χN
n 〈χN

n , ·〉 − iα

∞
∑

n=1

1

kn
χN
n 〈χD

n , ·〉

= I + χN
0 〈φ0, ·〉 − χN

0 〈χN
0 , ·〉+ αp

∞
∑

n=1

1

k2n
χD
n 〈χD

n , ·〉

= I + χN
0 〈φ0, ·〉 − χN

0 〈χN
0 , ·〉+ αp(−∆D)−1,

(4.16)

where we have used identities (2.5). In the same manner, we obtain the result
for the inverse Ω−1:

Ω−1 = ψ0〈χN
0 , ·〉+

∞
∑

n=1

k2n
k2n − α2

χN
n 〈χN

n , ·〉 − iα

∞
∑

n=1

kn
k2n − α2

χD
n 〈χN

n , ·〉

= I + ψ0〈χN
0 , ·〉+ α2(−∆N − α2)−1 − αp∗(−∆N − α2)−1.

(4.17)

The operators L,M appearing in the expressions for Ω = I+L and Ω−1 = I+M
are, as expected, integral operators with the kernels L, M that can be easily
obtained using formulae for the Neumann and Dirichlet resolvents (2.6)–(2.7):

L(x, y) = iα

2a

[

y − a sgn(y − x)
]

+
1

2a

(

e−iα(y+a) − 1
)

,

M(x, y) =
αeiα(a−x)

sin(2αa)
− α

2
e−iα(x−y)

[

cot(2αa)− i sgn(y − x)
]

− αe−iα(x+y)

2 sin(2αa)
.

(4.18)

To find the similar self-adjoint operator (1.3), we start from the quadratic
form (3.19). Inserting (4.18) into the latter and performing several integrations
by parts with noticing that LM = −L−M and (Mψ)′ = −iαMψ− iαψ results
in:

th[ψ] = ‖ψ′‖2 + α2|〈χN
0 , ψ〉|2. (4.19)

The corresponding operator h reads:

hψ = −ψ′′ + α2χN
0 〈χN

0 , ψ〉,
Dom(h) =

{

ψ ∈ W 2,2(−a, a) : ψ′(±a) = 0
}

.
(4.20)

We remark that h is a rank one perturbation of the Neumann Laplacian. The
eigenfunctions of h are χN

n with χN
0 corresponding to the eigenvalue α2.

It is interesting to compare the spectra of H and h for α = kn, i.e. in the
points where the spectra are degenerate and similarity transformation breaks
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down because the operator Ω is not invertible. k2n is an eigenvalue with the
algebraic multiplicity two for bothH and h. However, the geometric multiplicity
differs: it is one for H and two for h.

The form of h also explains the origin of the peculiar α-dependence of the
eigenvalues of H (which are all constant except for λ0(α) = α2). In fact, it is
the nature of the rank one perturbation to leave all the Neumann eigenvalues
untouched except for the lowest one that is driven to the α2 behavior.

4.5 More general boundary conditions

Finally, we consider the general PT -symmetric boundary conditions c± := iα±
β, with α, β ∈ R. We start with formal considerations. The Θ-self-adjointness
of H can be expressed in the following way. We take the advantage of the
realization of Θ = I+K, which we insert into ΘHψ = H∗Θψ, ψ ∈ Dom(H). A
formal interchange of differentiation with integration and integration by parts
yield following problem that we can understand in distributional sense:

(∂2x − ∂2y)K(x, y) = 0, (4.21)

∂yK(x,±a) + (iα± β)K(x,±a) = 0. (4.22)

Moreover, Θψ must belong to Dom (H∗), from which we have a condition

∂xK(±a, y) + (−iα± β)K(±a, y) = 2iαδ(y ∓ a). (4.23)

Here δ denotes the Dirac delta function.
Already presented examples of Θ for β = 0 satisfy these requirements, par-

ticularly K solves the wave equation (4.21). The kernel (4.14), corresponding
to the simpler form of presented metric operators, is a function of x − y only.
Inspired by this, we find the solution of the wave equation

K(x, y) = eiα(x−y)−β|x−y| [c+ iα sgn(x − y)
]

, c ∈ R, (4.24)

that satisfies the “boundary conditions” (4.22) and (4.23) as well. The one
parametric family of solutions (4.24) of (4.21)–(4.23) demonstrates the known
non-uniqueness of solutions to this problem. We also remark that c can be taken
as α or a dependent as well.

The positivity of Θ is ensured if the norm of K is smaller than 1. This can
be estimated by the Hilbert-Schmidt norm of K which is explicitly computable:

‖K‖2HS = (c2 + α2)
4aβ + e−4aβ − 1

2β2
. (4.25)

Consequently, the positivity of Θ can be achieved by several ways, e.g., if a is
small; or if β is positive and large; or |c| and |α| are small. In any of the regimes,
the formal manipulations above are justified.
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5 Bounded perturbations

In this section we show that results of Section 3 remain valid if we consider a
bounded perturbation V of H .

Firstly we remark that the perturbation result [11, Thm. XIX 2.7] guar-
antees that H + V remains a discrete spectral operator. That is, if all the
eigenvalues of H + V are simple, then the metric operator Θ exists. We show
that the claim of Theorem 3.2 is valid for H +V as well. The rest of the results
from Section 3 then follows straightforwardly.

Our approach is to use analytic perturbation theory for the operator h :=
ΩHΩ−1 that is perturbed by a bounded operator ΩVΩ−1. We denote by ξn, ηn
the eigenfunctions of H + V and H∗ + V ∗, respectively. Let en be elements of
any orthonormal basis in H.

Theorem 5.1. Let all the eigenvalues of H be simple and let V be a bounded
operator. If all eigenvalues of H + V are simple, then ΩV =

∑∞
n=0 en〈ηn, ·〉,

i.e. ΩV : ξn 7→ en, can be expressed as

ΩV = U + L, (5.1)

where U is a unitary operator and L is a Hilbert-Schmidt operator.

Proof. As in the proof of Theorem 3.2, without loss of generality, we restrict
ourselves to en := χN

n and we show that ΩV = I + L with L being Hilbert-
Schmidt. We consider the normal operator h := ΩHΩ−1 and we perturb it by
v := ΩV Ω−1. More specifically, we construct h(ε) := h+ε v forming a holomor-
phic family of type (A) with respect to the parameter ε. We denote by µn(ε),
µn(ε) the eigenvalues and by ξ̃n(ε), η̃n(ε) the corresponding eigenfunctions of
h(ε) and of h(ε)∗ respectively. h(0), h(0)∗ are normal, therefore the eigenfunc-
tions ξ̃n(0) and η̃n(0) form orthonormal bases. In fact, with our choice of en,
ξ̃n(0) = η̃n(0) = χN

n .
We construct operator Ω̃ : ξ̃n(1) 7→ χN

n and we will show that Ω̃ = I + L̃,
where L̃ is Hilbert-Schmidt. ΩV is the composition of Ω and Ω̃ and the claim
then follows easily using of the fact that Hilbert-Schmidt operators are a *-both-
sided ideal.

The distance of µn(0) and µn(1) can be at most ‖v‖. Since we know the
asymptotics of µn(0) = λn, see (3.5), it is clear that there exists N0 such that
for all n > N0, |µn+1(1)− µn(1)| > n holds. Moreover, for such n the radius of
convergence of perturbation series for eigenvalues and eigenfunctions is larger
than 1. Thus, we have

η̃n(ε) = χN
n +

∞
∑

j=1

η̃(j)n εj . (5.2)

We estimate the norms of η̃
(j)
n using the analytic perturbation theory:

‖η̃(j)n ‖ ≤ 1

2π

∮

Γn

∥

∥(h(0)∗ − E)−1(v∗(h(0)∗ − E)−1)jχN
n

∥

∥ dE

≤ 1

2π

∮

Γn

2j+1‖v‖j
nj+1

dE ≤ cj

nj
,

(5.3)
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where Γn is a circle around µn(0) of radius n/2 and the constant c does not
depend on n. We define N1 as such that N1 ≥ N0 and c/N1 < 1.

We prove that Ω̃ has the desired form by showing that the adjoint Ω̃∗ =
∑∞

n=0 η̃n(1)〈χN
n , ·〉 can be written as Ω̃∗ = I + L̃∗

N1
+ L̃∗

∞, where

L̃∗
N1

:=

N1−1
∑

n=0

(η̃n(1)− χN
n )〈χN

n , ·〉, L̃∗
∞ :=

∞
∑

n=N1

∞
∑

j=1

η̃(j)n 〈χN
n , ·〉, (5.4)

and L̃∗
N1

and L̃∗
∞ are Hilbert-Schmidt. The decomposition of Ω̃∗ follows im-

mediately if we consider the expansions (5.2) for n > N1 and rewrite η̃n(1) =
χN
n + (η̃n(1) − χN

n ) for n ≤ N1. L̃∗
N1

is a finite rank operator therefore it is

obviously Hilbert-Schmidt. L̃∗
∞ is bounded and the defining sum is absolutely

convergent since

∞
∑

n=N1

∞
∑

j=2

‖η̃(j)n ‖|〈χN
n , ψ〉| ≤ ‖ψ‖

∞
∑

n=N1

∞
∑

j=2

( c

n

)j

≤ ‖ψ‖
∞
∑

n=N1

c2

n2 − nc
,

∞
∑

n=N1

‖η̃(1)n ‖|〈χN
n , ψ〉| ≤ c

√

√

√

√

∞
∑

n=N1

1

n2

√

√

√

√

∞
∑

n=N1

|〈χN
n , ψ〉|2 ≤ c‖ψ‖

√

√

√

√

∞
∑

n=N1

1

n2
.

(5.5)

Finally we estimate the Hilbert-Schmidt norm of L̃∗
∞:

∞
∑

p=0

〈 ∞
∑

m=N1

∞
∑

i=1

η̃(i)m 〈χN
m, χ

N
p 〉,

∞
∑

n=N1

∞
∑

j=1

η̃(j)n 〈χN
n , χ

N
p 〉
〉

≤
∞
∑

p=N1

∞
∑

i=1

(

c

p

)i ∞
∑

j=1

(

c

p

)j

≤
∞
∑

p=N1

(

c

p− c

)2

<∞.

(5.6)

This concludes the proof of the theorem.

Remark 5.1 (General Sturm-Liouville operators). Let us conclude this section
by a remark on how to extend the previous result on bounded perturbations V
for the operator H in the general form

Hψ := −(ρψ′)′ + V ψ on L2(−a, a) ,

subject to the boundary conditions

ρ(±a)ψ′(±a) + c±ψ(±a) = 0. (5.7)

Assuming merely that ρ is a bounded and uniformly positive function, i.e.,
there exists a positive constant C such that C−1 ≤ ρ(x) ≤ C for all x ∈ (−a, a),
the operator can be defined (cf. [8, Corol. 4.4.3]) as an m-sectorial operator
associated with a closed sectorial form with domainW 1,2(−a, a). If, in addition,
we assume that ρ ∈ W 1,∞(−a, a), then it is possible to check that the domain
ofH consists of functions ψ from the Sobolev spaceW 2,2(−a, a) satisfying (5.7).
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Now, let us strengthen the regularity hypothesis to ρ ∈W 2,∞(−a, a) and in-
troduce the unitary (Liouville) transformation U : L2(−a, a) → L2(f(−a), f(a))
by

U−1φ := ρ−1/4 φ ◦ f , where f(x) :=

∫ x

0

dξ
√

ρ(ξ)
.

Then it is straightforward to check that the unitarily equivalent operator H̃ :=
UHU−1 on L2(f(−a), f(a)) satisfies

H̃φ = −φ′′ + Ṽ φ+Wφ,

Dom(H̃) =
{

φ ∈ W 2,2
(

f(−a), f(a)
)

: φ′(±f(a)) + c̃±φ(±f(a)) = 0
}

,

where Ṽ := UV U−1 and

c̃± :=
c±

ρ(±a)1/4 − 1

4

ρ′(±a)
ρ(±a)1/2 , W :=

(

1

4
ρ′′ − 1

16

ρ′2

ρ

)

◦ f−1 .

In this way, we have transformed the second-order perturbation represented by ρ
into a bounded potential W and modified boundary conditions. Theorem 5.1
applies to H̃ and, as a consequence of the unitary transform U , to H as well.

6 Conclusions

In this article, we investigated the structure of similarity transformations Ω and
metric operators Θ for Sturm-Liouville operators with separated, Robin-type
boundary conditions. The main result is that Ω and Θ can be expressed as a
sum of the identity and an integral Hilbert-Schmidt operator.

We would like to emphasize that this not always the case for other types
of operators, see, e.g., [2, 32, 24, 14], where Θ is a sum of the identity and
a bounded non-compact operator. The latter is a composition of the parity
and the multiplication by sign function. Moreover, corresponding similarity
transformations map (non-self-adjoint) point interactions to (self-adjoint) point
interactions, which is not typically the case for operators studied here. This
is illustrated in the example of PT -symmetric boundary conditions where the
equivalent self-adjoint operator is not a point interaction but rather a rank one
perturbation of the Neumann Laplacian.

In this work we considered the separated boundary conditions only. Nonethe-
less, the analogous results are expected to be valid for all strongly regular bound-
ary conditions.

As the proofs of the results show, the crucial property is the asymptotics of
eigenvalues, i.e. separation distance of eigenvalues tends to infinity, that is used
for the proof of the existence of similarity transformations [11]. Recent results on
basis properties for perturbations of harmonic oscillator type operators [1, 30, 3]
give a possibility to investigate the structure of similarity transformation in these
cases as well. Another step is to extend the results e.g. on Hill operators, where
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a criterion on being spectral operator of scalar type has been obtained in [13]
and recently extended in [10].

On the other hand, the structure of similarity transformations for operators
with continuous spectrum as well as for multidimensional Schrödinger operators
is almost unexplored and constitutes thus a challenging open problem.

We illustrated the results by an example of PT -symmetric boundary condi-
tions, where we found all the studied objects in a closed formula form, which is
hardly the case in more general situations. However, in general, we may search
for approximations of Ω or Θ, typically applying the analytic perturbation the-
ory to find perturbation series for eigenvalues and eigenfunctions of H to certain
order k. For instance, we perturb the parameters c± in boundary conditions
by small ε. As a result we find an approximation happ of the similar operator
h with resolvents satisfying ‖(h − z)−1 − (happ − z)−1‖ ≤ Cεk. An extensive
discussion and example of such construction can be found in [34]. The same
remark is appropriate for small perturbations by bounded operator discussed in
Section 5.
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