163 research outputs found

    Forward and Inverse Analysis of Chemical Transport Models

    Get PDF
    Assessing the discrepancy between modeled and observed distributions of aerosols is a persistent problem on many scales. Tools for analyzing the evolution of aerosol size distributions using the adjoint method are presented in idealized box model calculations. The ability to recover information about aerosol growth rates and initial size distributions is assessed given a range of simulated observations of evolving systems. While such tools alone could facilitate analysis of chamber measurements, improving estimates of aerosol sources on regional and global scales requires explicit consideration of many additional chemical and physical processes that govern secondary formation of atmospheric aerosols from emissions of gas-phase precursors. The adjoint of the global chemical transport model GEOS-Chem is derived, affording detailed analysis of the relationship between gas-phase aerosol precursor emissions (SOx, NOx, and NH3) and the subsequent distributions of sulfate - ammonium - nitrate aerosol. Assimilation of surface measurements of sulfate and nitrate aerosol is shown to provide valuable constraints on emissions of ammonia. Adjoint sensitivities are used to propose strategies for air quality control, suggesting, for example, that reduction of SOx emissions in the summer and NH3 emissions in the winter would most effectively reduce non-attainment of aerosol air quality standards. The ability of this model to estimate global distributions of carbonaceous aerosol is also addressed. Based on new yield data from environmental chamber studies, mechanisms for incorporating the dependence of secondary organic aerosol (SOA) formation on NOx concentrations are developed for use in global models. When NOx levels are appropriately accounted for, it is demonstrated that sources such as isoprene and aromatics, previously neglected as sources of aerosol in global models, significantly contribute to predicted SOA burdens downwind of polluted areas (owing to benzene and toluene) and in the free troposphere (owing to isoprene)

    Constraints on aerosol sources using GEOS-Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data

    Get PDF
    We present a new top-down approach that spatially constrains the amount of aerosol emissions using satellite (Moderate Resolution Imaging Spectroradiometer (MODIS)) observed radiances with the adjoint of a chemistry transport model (GEOS-Chem). This paper aims to demonstrate the approach through applying it to a case study that yields the following emission estimates over China for April 2008: 1.73 Tg for SO2, 0.72 Tg for NH3, 1.38 Tg for NOx, 0.10 Tg for black carbon, and 0.18 Tg for organic carbon from anthropogenic sources, which reflects, respectively, a reduction of 33.5%, 34.5%, 18.8%, 9.1%, and 15% in comparison to the prior bottom-up inventories of INTEX-B 2006. The mineral dust emission from the online dust entrainment and mobilization module is reduced by 56.4% of 19.02 to 8.30 Tg. Compared to the prior simulation, the posterior simulation shows a much better agreement with the following independent measurements: aerosol optical depth (AOD) measured by AERONET sun-spectrophotometers and retrieved from Multi-angle Imaging SpectroRadiometer (MISR), atmospheric NO2 and SO2 columnar amount retrieved from Ozone Monitoring Instrument (OMI), and in situ data of sulfate-nitrate-ammonium and PM10 (particular matter with aerodynamic diameter less than 10 mm) mass concentrations over both anthropogenic pollution and dust source regions. Assuming the bottom-up (prior) anthropogenic emissions are the best estimates for their base year of 2006, the overwhelming reduction in the posterior (top-down) estimate indicates less emission in April 2008 especially for the SO2 tracer in the central and eastern parts of China, and/or an overestimation in the prior emission. The former is supported by the AOD change detected by MODIS and MISR sensors, while the latter is likely the case for NOx and NH3 emissions because no evidence shows that their atmospheric concentration has declined over China. With the promising results shown in this study, continuous efforts are needed toward a holistic and comprehensive inversion of emission using multisensor remote sensing data (of trace gases and aerosols) for constraining aerosol primary and precursor emissions at various temporal and spatial scales
    corecore