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Abstract

Assessing the discrepancy between modeled and observed distributions of aerosols is a

persistent problem on many scales. Tools for analyzing the evolution of aerosol size distri-

butions using the adjoint method are presented in idealized box model calculations. The

ability to recover information about aerosol growth rates and initial size distributions is

assessed given a range of simulated observations of evolving systems. While such tools

alone could facilitate analysis of chamber measurements, improving estimates of aerosol

sources on regional and global scales requires explicit consideration of many additional

chemical and physical processes that govern secondary formation of atmospheric aerosols

from emissions of gas-phase precursors. The adjoint of the global chemical transport model

GEOS-Chem is derived, affording detailed analysis of the relationship between gas-phase

aerosol precursor emissions (SOx, NOx and NH3) and the subsequent distributions of sul-

fate - ammonium - nitrate aerosol. Assimilation of surface measurements of sulfate and

nitrate aerosol is shown to provide valuable constraints on emissions of ammonia. Adjoint

sensitivities are used to propose strategies for air quality control, suggesting, for example,

that reduction of SOx emissions in the summer and NH3 emissions in the winter would

most effectively reduce non-attainment of aerosol air quality standards. The ability of this

model to estimate global distributions of carbonaceous aerosol is also addressed. Based

on new yield data from environmental chamber studies, mechanisms for incorporating the

dependence of secondary organic aerosol (SOA) formation on NOx concentrations are de-

veloped for use in global models. When NOx levels are appropriately accounted for, it is



vii

demonstrated that sources such as isoprene and aromatics, previously neglected as sources

of aerosol in global models, significantly contribute to predicted SOA burdens downwind

of polluted areas (owing to benzene and toluene) and in the free troposphere (owing to

isoprene).
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Chapter 1

Introduction

The combined effects of air pollution and climate change pose a tremendous challenge to

stewardship of the environment in the coming century. Aerosols, or particulate matter

(PM), are particles small enough to remain aloft in the atmosphere for as long as several

days. Either emitted directly as particles, or formed in the atmosphere by condensation of

trace gases, aerosols generated by human activities play an important role in determining

both air quality and climate. Despite attempts to regulate such activity, concentrations of

particulate matter presently exceed recommended thresholds throughout much of the indus-

trialized northern hemisphere (WHO , 2003). Exposure to excessive aerosol concentrations

is associated with increased chances of cardiovascular diseases, inhibited lung development

and premature death (Burnett et al., 2000; Dominici et al., 2006; Gauderman et al., 2004;

Pope, 2000; Pope et al., 2002). Fine particulates are also responsible for reduced visibility

in national parks and scenic areas (Malm et al., 2000). Additionally, these particles often

travel far from their sources, where ultimately, when removed from the atmosphere, the

reactive chemicals they have amassed can be hazardous to surface ecosystem, threatening

biodiversity (Stevens et al., 2004).

While the prevalence of these problems alone warrants further air quality regulations,

increases in global industrialization in the coming decades make formulation of even more

aggressive mitigation strategies an imperative. Of growing concern is that traditional
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strategies for improving air quality will fail in the future owing to enhanced intercontinental

transport of pollution. Despite the success of current emissions regulations in stabilizing

local pollution levels in parts of North America and Europe, increased export of pollution

from rapidly developing regions such as India and China may soon begin to negate such

progress. Intercontinental transport of aerosol already hinders local efforts at restoring

pristine environments (Park et al., 2004, 2006). How much will emissions of pollutants and

their precursors have to increase before it becomes impossible to maintain local air quality

with purely local control strategies? Formulation of effective mitigation strategies for the

future must necessarily account for increasingly delocalized ramifications of anthropogenic

activity on global air quality.

That aerosols have played an important role in affecting current climate has also become

increasingly clear. Since preindustrial times, anthropogenic aerosols have caused a direct

radiative forcing estimated at −0.1 to −0.8 W m−2 (Schulz et al., 2006; Yu et al., 2006)

and an indirect radiative forcing likely even larger (Lohmann and Feichter , 2005). For

comparison, the total radiative forcing from anthropogenic carbon dioxide (CO2) that has

accumulated in the atmosphere over the same time period is +1.66 ±0.17 W m−2 (IPCC ,

2007). Unlike assessing future trends of CO2, a long lived inert tracer, predicting how global

burdens of aerosol will respond to changes in emissions in the coming century is complicated

by gas-phase reactions and thermodynamic transformations that govern their production

and subsequent influence on both the chemical and physical state of the atmosphere.

Aerosols can also play an important role in determining the production and lifetime of

gases such as ozone (O3), which is in turn itself of critical concern for both air quality and

climate. It has been shown that heterogeneous chemistry significantly influences radiative

forcing of O3, particularly at high latitudes where aerosol burdens are large and concen-

trations of OH low (Liao et al., 2004). Overall, most future emission scenarios for the

coming decades result in changes to global burdens of pollutants such that global warm-

ing is enhanced. Even if concentrations of greenhouse gases such as O3 and methane are
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dramatically reduced, commensurate reduction in sulfate levels would result in a net posi-

tive forcing, as current concentrations of sulfate provide substantial cooling (Unger et al.,

2006b). In turn, exacerbated climate change will alter the formation of such air pollu-

tion owing to changes in transport, precipitation, and temperature. While these physical

climate effects are predicted to dampen future increases in global burdens of O3 and sul-

fate, surface level concentrations are predicted to be regionally enhanced in many heavily

populated areas (Liao et al., 2006; Murazaki and Hess, 2006; Unger et al., 2006b), while

global burdens of secondary organic aerosol may even increase (Liao et al., 2006). In short,

assessment of the ability of such species to affect climate change must take into account

these forms of coupling; considering species individually will not suffice (Stier et al., 2006;

Unger et al., 2006a).

Clearly an attempt to design successful aerosol controls first requires comprehensive

understanding of the processes that govern formation and distribution of gas and particle-

phase atmospheric pollutants. Chemical transport models are essential tools for establish-

ing links between anthropogenic activity and air quality by estimating the chemical state

of the atmosphere for a given set of meteorological conditions and emissions inventories.

However, discrepancies between model predictions and observations are still a persistent

problem on many scales. On regional scales, estimates of nitrate aerosol are often widely

inconsistent with surface measurements (Park et al., 2006; Liao et al., 2007). Globally,

organic species comprise a significant fraction of the mass of fine particles, although the

actual composition of most of this mass is largely unidentified (Kanakidou et al., 2005).

Simulations of secondary organic aerosol (SOA) in environments ranging from urban cen-

ters to the free troposphere have recently been shown to be lower than observed by as much

as one to two orders of magnitude (Heald et al., 2005; Volkamer et al., 2006; de Gouw et al.,

2005).

To improve the quality of model predictions, one can take the bottom-up approach,

wherein results from new fundamental laboratory experiments are used to revise or improve
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the treatment of various processes simulated in models, building new theory, or adding new

levels of detail. This approach is well suited for situations where the underlying physics

or chemistry is the source of uncertainty and only a limited amount of observations are

available for comparison to 3-dimensional model estimates. For example, estimates of the

global budgets of SOA are difficult to verify owing to a paucity of measurements. However,

key findings from recent field measurements and environmental chamber studies continue

to drive model development.

When presented with a reasonable model and a set of ample observations, another

approach for minimizing discrepancies between models and observations owing to uncer-

tain model parameters is inverse modeling. Measurements themselves are used to directly

constrain the set of believable model parameter values by rejecting parameters whose con-

ditional probability given resulting estimates of observations is small (Tarantola, 2006).

Networks of surface air quality monitoring stations, new space-born observations and co-

ordinated field campaigns present tremendous opportunity for constraining estimates of

sources and distributions of aerosols. However, integrated analysis and interpretation of

these data is a formidable challenge as measurements range from vertical profiles of re-

active gasses to optical properties of long lived particulate species. Corresponding model

predictions are dependent upon numerous parameters, such as emissions inventories, injec-

tion heights, convective scavenging efficiencies, deposition rates and heterogeneous reaction

probabilities.

A powerful approach to addressing challenges of both source attribution and model

performance is the adjoint method. Originating from optimal control theory and well es-

tablished in fields such as meteorology and oceanography, this approach has been applied

to problems in atmospheric chemistry only relatively recently. Constructed as a functional

transpose of the chemical transport model itself, an adjoint model is an efficient tool for

evaluating the sensitivity of a scalar model response function with respect to numerous

model parameters. For inverse modeling (data assimilation), the model response is defined
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as a metric of the overall mismatch between predictions and observations. The adjoint

gradients are then used to optimize control parameters to minimize this mismatch while

simultaneously staying within reasonable bounds. By quantifying the relative importance

of many uncertain factors, the adjoint method can be used to efficiently provide insight

into the origins of the initial discrepancy between the predictions and observations, rather

than simply adjusting the predicted chemical state to match the observations. A signifi-

cant advantage of an adjoint model is that it calculates sensitivities on the resolution of the

forward model itself, thus avoiding the common practice of lumping sources into large geo-

graphical regions for the sake of minimizing computational expense, as the latter approach

smoothes out important variability in the sources of pollution (Kopacz et al., submitted;

Stavrakou and Muller , 2006).

However, even with a model that reproduces observations reasonably well, the complex

nonlinear chemical and physical processes that govern formation of pollution from precursor

emissions often preclude simple assessment of the precise changes in emissions required to

affect a specified pollution reduction. Formulation of regulatory measures requires the use

of receptor based models that quantify the origins of hazardous pollution concentrations

(Marmur et al., 2006). An adjoint model can also be used for this purpose. If the response

function is a metric of air quality non-attainment in a select region, and the variable

parameters are the emissions inventories used by the forward model, then the resulting

adjoint model sensitivities give the linear estimate of the efficacy of reducing emissions

from each source on achieving attainment (Hakami et al., 2006).

Overall, both forward and inverse model analysis are important steps toward under-

standing distributions of atmospheric aerosols well enough to successfully address the reg-

ulatory challenges of controlling air quality while accounting for climate change. With

these goals in mind, issues of model sensitivity, data assimilation, and source evaluation

are assessed on a broad range of scales. In Chapter 2, equations are derived for analyzing

the evolution of multicomponent aerosol size distributions in idealized box model calcula-
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tions using the adjoint method. The ability to recover information about aerosol growth

rates and initial size distributions are assessed given a range of simulated observations of

evolving systems. Extension of this approach to inclusion of coagulation, with further at-

tention to numerical techniques, can be found in Sandu et al. (2005). Chapter 3 presents

the adjoint of a global 3-dimensional chemical transport model (GEOS-Chem) including

detailed tropospheric chemistry, thermodynamic aerosol partitioning, heterogeneous chem-

istry, transport, and depositional losses. In Chapter 4, the adjoint of GEOS-Chem is used

to evaluate sources of secondary inorganic aerosols over the United States. Application of

the adjoint of GEOS-Chem to constrain source estimates of carbon monoxide (CO) using

satellite measurements from MOPPIT is described in Kopacz et al. (submitted). Conse-

quences of the recent revelation that photooxidation of isoprene forms significant amounts

of SOA in low-NOx environments (Claeys et al., 2004b; Kroll et al., 2006) on global carbon

aerosol budgets are considered in Chapter 5; comparisons of total predicted organic aerosol

with surface measurements in the Unites States can be found in Liao et al. (2007); Zhang

et al. (submitted). Examination of the magnitude of this substantial biogenic source in

comparison to recent re-evaluation of the yield of SOA from aromatic compounds (i.e. an-

thropogenic sources) is given in Chapter 6. The final chapter concludes with discussion of

key findings and future work.
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Chapter 2

Inverse Modeling of Aerosol
Dynamics: Condensational
Growth1

2.1 Introduction

In recent years, data assimilation techniques have been used to increase one’s ability to pre-

dict and characterize atmospheric chemical phenomena by providing valuable estimates of

surface emissions, improved model sensitivities, and optimized measurement strategies. By

enforcing closure between model predictions and experimental observations, these methods

constrain the variance of chemical transport models (CTMs) to produce optimal represen-

tations of the state of the atmosphere. As the number of variables used to describe the

state of the atmosphere increases, the process of integrating models and measurements be-

comes increasingly difficult. Fortunately, advances in algorithm efficiency, computational

resources, and the theory of inverse modeling have facilitated extension of these techniques

to systems of increasing complexity. Anticipating the point at which all main features

of sophisticated atmospheric CTMs are endowed with an inverse, this work examines the

possibilities of extending data assimilation studies to include explicit consideration of size
1Henze, D. K., J. H. Seinfeld, W. Liao, A. Sandu, and G. R. Carmichael (2004), Inverse modeling of

aerosol dynamics: Condensational Growth, J. Geophys. Res., 109, D14201, doi:1029/2004JD004593
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and composition aerosol dynamics.

Although the actual implementation of data assimilation methods can be quite different,

in general all techniques utilize some observational data set to provide an improved model

representation of the system in question. Many previous studies on inverse modeling have

utilized the Kalman filter, wherein propagation of the error covariance matrix is used to

retain consistency between the model and the measurements (Lyster et al., 1997; Khattatov

et al., 2000; Stajner et al., 2001; Palmer et al., 2003a). While using a Kalman filter

has the distinct advantage that model error is explicitly included in the analysis, the

large computational cost of this approach has historically been the prime motivation for

development of alternative methods. As an alternative approach, the adjoint method was

first suggested as an efficient technique for performing variational data assimilations in

atmospheric transport models by Marchuk (1974). Originating from the mathematics of

systems optimization and control theory (Cacuci , 1981a,b) and well established in the

fields of fluid mechanics (Pironneau, 1974), meteorology (Talagrand and Courtier , 1987)

and oceanography (Tziperman and Thacker , 1989), the adjoint method has only been

applied to CTMs relatively recently (Fisher and Lary , 1995; Elbern et al., 1997; Errera

and Fonteyn, 2001). The treatment, while successful, has been limited to the assimilation

and recovery of gas phase species.

The inclusion of detailed aerosol chemistry and physics has become requisite in at-

mospheric CTMs. Future implementation of 4D-Var assimilation techniques will likewise

require the inclusion of aerosols in the adjoint models. To lay the groundwork for this

endeavor, the fundamental capabilities (and limitations) of applying such techniques to

aerosols need to be investigated. In this paper, we apply the first inverse models of multi-

component aerosol dynamics, and evaluate their performance under conditions designed to

facilitate incorporation of these routines into existing adjoint CTMs. A paper presenting

derivations of the necessary equations for several other forms of inverse aerosol models, and

evaluation of these for a simple, single component aerosol has also been submitted (Sandu
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et al., 2005). These works differ substantially from the only previous data assimilation

study involving aerosols (Collins et al., 2001) in that the aerosol distribution is allowed

to evolve according to the aerosol dynamic equation (Pilinis, 1990) and that the inversion

is performed using the adjoint technique. In the study by Collins et al, the aerosols were

represented as growing via empirical correlations and growth rates, and the total aerosol

optical depth was assimilated sequentially using a Kalman filter.

With the above goal in mind, adjoint aerosol models are developed and are tested using

simulated observations (commonly known as an identical twin experiment). The (forward)

aerosol model used is a simplified, yet numerically and physically consistent, version of

the aerosol submodel currently employed in several 4-D CTMs (Meng et al., 1998; Song

and Carmichael , 2001). As operator splitting is used in such models to isolate all aerosol

processes into a single 0-D (box) routine which is called within each cell of the discretized

3-D spatial field, it is sufficient to use a forward box model that does not include gas-phase

chemistry or spatial advection. Within this forward box model, emphasis is placed on

gas-to-particle conversion, wherein gas-phase transport is the rate-limiting step for particle

growth. The details of the forward model are given in Section 2.

An immediate application of an inverse aerosol model is to infer the size distributions

of aerosol sources using surface, airborne, or possibly even satellite measurements. This

involves reconstructing back trajectories of the distribution by repetitive calls to the adjoint

box model from within the overall adjoint 4-D CTM, asking each time to recover the shape

of the distribution at a previous time step. Therefore, an important capability of the

aerosol adjoint routine is to recover an initial size distribution based upon knowledge of

the distribution at some later time(s). The length of the assimilation period will depend

upon the temporal resolution of the forward model and the frequency of the observations;

herein we consider periods ranging from several minutes to a few hours.

In addition to recovering initial distributions, an inverse aerosol model can be used to

estimate physical properties key to the dynamic evolution of the distribution by treating
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these quantities as variable parameters. The growth of aerosol particles due to condensa-

tion / evaporation is heavily influenced by the thermodynamic properties of the transfer-

ring species. A significant fraction of organic aerosol particles are comprised of chemical

compounds whose thermodynamic properties in the particulate phase are not well char-

acterized. Better estimates of such properties would not only increase the accuracy of

CTMs, but would also aid in interpretation of laboratory studies of aerosol dynamics.

Hence another desired capability of an adjoint aerosol model is to provide estimates of the

thermodynamic properties of the aerosol species.

The aerosol adjoint models can also help refine experimental measurement strategies.

Conditions can be simulated in which either individual species are not measured, or the

size distribution is only partially sampled. Comparison of the assimilations between these

scenarios leads to sampling schemes that provide an optimum balance between data recov-

erability and observational burden.

One of the primary reasons for choosing the adjoint method to construct an inverse

aerosol model is the computational efficiency of this approach. As variations in the actual

implementation of this methodology affect the overall computational requirements, it is

beneficial to consider different approaches to constructing the adjoint models, of which

there are two generally recognized types—continuous and discrete (Giles and Pierce, 2000;

Tziperman and Thacker , 1989). The first method is to derive the continuous adjoint

equations from the governing equations, and then solve these numerically. The second

approach is to cast the forward equations into a numerical discretized form, and then take

the adjoint of this discretized formula. Numerical discretization and adjoint operations

do not commute in general, therefore the continuous and discrete approaches lead to final

gradients that differ in accuracy and computational expense; hence, it is desirable to assess

both tactics when introducing the adjoint method to a new field (Sandu et al., 2005).
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2.2 Multicomponent gas-to-particle conversion (the forward

model)

We consider a multicomponent aerosol that is growing/evaporating as a result of gas-

to-particle conversion. The continuous governing equation for a 0-D, multicomponent,

internally mixed aerosol distribution is then (Pilinis, 1990; Meng et al., 1998)

∂pi(µ, t)
∂t

= Hi(µ, p1, . . . , pn, t)p(µ, t)− 1
3

∂(Hpi)
∂µ

. (2.1)

The boundary conditions are

pi(µ = µmin, t) = 0 , pi(µ = µmax, t) = 0 , pi(µ, t = t0) = p0
i (µ) ,

and the terms are

p(µ, t) =
n∑

i=1

pi(µ, t) , H(µ, p1, p2, · · · , pn, t) =
n∑

i=1

Hi(µ, p1, p2, · · · , pn, t) ,

where p is the total mass distribution, pi is the mass distribution of the ith species, n

is the number of species, µ is the log of the particle diameter over a reference diameter,

Hi is the condensation/evaporation rate of a single species, and H is the total condensa-

tion/evaporation rate. Hi is given by the expression (Wexler and Seinfeld , 1990)

Hi =
1
m

dmi

dt
=

2πDpDi

m(1 + 2`
αDp

)
(gi − ci), (2.2)

where Dp is the diameter of the aerosol particle, Di is the molecular diffusivity of species

i in air, mi is the mass of species i in a particle of diameter Dp, m is the total mass of

the particle, ` is the mean free path, α is the sticking coefficient, gi is the concentration of

species i in the gas phase and ci is the surface concentration of species i.

To solve (2.1), the aerosol distribution is discretized using a sectional approach (Gelbard
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and Seinfeld , 1980; Gelbard et al., 1980). The discrete form of the equation is solved

using operator splitting techniques (Yanenko, 1971) and a modified Bott advection scheme

(Bott , 1989; Dhaniyala and Wexler , 1996) in which the growth term is calculated before

the advection term in order to avoid particles being left behind in the lower bins (Dabdub

and Seinfeld , 1994; Zhang et al., 1999).

2.3 The inverse problem

The goal of inverse modeling is to estimate model parameters which, when implemented in

the forward model, yield solutions that are in optimal agreement with a set of observational

data. The first step is to calculate a trial solution of the forward model (2.1) using a

background (first guess) value for the model parameters, χ. The discrepancy between the

trial solution and what is known from observations is measured by the cost function, which

can be represented in general form as

J (pi, χ) =
∫ T

t0

∫ ∞

µmin

J0(pi(µ, t))dµdt. (2.3)

More specifically, for data assimilation problems, the cost function J is given as

J (pi, χ) =
1
2
(χ− χb)T B−1(χ− χb) +

1
2

n∑
i

∑
k∈Ω

(yk − h(pk
i ))

T R−1
k (yk − h(pk

i )). (2.4)

where Ω is the set of discrete time points tk for which data are known, yk are the observa-

tions at time tk, h maps the solution from the model space to the observational space, χb is

the apriori (background) estimate of χ, the matrix B is the error covariance associated with

the background term, and the Rk are error covariances of the observations. The optimal

model solution and parameters are found by solving the minimization problem

min
χ
J (pi, χ),
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where Jmin is found using the gradient resulting from taking the derivative of (2.3) with

respect to χ. The difficulty lies in the fact that there is typically no single equation relating

the model parameters to the model solution, as J depends on χ implicitly through the

dependency of pi on χ given by the forward model. In order to determine ∇χJ , an inverse

model must be constructed which can calculate the derivative of the forward solution with

respect to the model parameters.

2.3.1 The adjoint method

The adjoint method uses a single backward integration of the model (with the state vari-

able during the backward integration being the derivative of the cost function with respect

to the original forward state variables) from the final time to the initial conditions in order

to determine all elements of the gradient simultaneously. Compared to forward sensitivity

analysis (Hoffman, 1986), in which the gradient is determined by consecutively propagat-

ing perturbations of each parameter individually through the model, the dependence of

the calculation’s complexity on the number of variable parameters is greatly reduced (Ta-

lagrand and Courtier , 1987). Not only does this approach afford application to detailed

models, it also facilitates the simultaneous estimation of large numbers of parameters. One

drawback to the adjoint approach is that for nonlinear problems, trajectories from the

forward integration must be available for the backward integration. This leads to large

storage requirements; however, multiple level checkpointing schemes can be implemented

to reduce this demand. A limitation of the adjoint method itself is that estimates from

the solution of the inverse problem are subject to the same systematic and random errors

present in the forward model. Unlike the Kalman filter approach, these factors can not be

treated explicitly. Although the method can be used to improve systematic error induced

by model parameters, sound application is limited to models for which random errors in

the forward solution are small, or at least well characterized.

In the following subsections, we give the equations for ∇χJ derived using both the
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continuous and discrete adjoint methods. While there is no formal advantage of one method

over another in any general sense, one approach may be better suited to a given application.

Typically, the discrete approach yields analytical gradients by implementing in reverse

order the exact numerical code used to calculate the forward model, thereby capturing the

variable dependencies and nonlinearities that are included in the discretized forward model.

Furthermore, if the governing equation is solved using an explicit numerical algorithm, it

can be possible to generate the discrete adjoint codes easily and quickly using automatic

differentiation software. Alternatively, to derive the continuous adjoint equations by hand,

one must linearize the equations first, leading to gradients that can be highly approximate.

On the other hand, deriving the continuous adjoint equations often provides insight into

the physical meanings of the adjoint variables and boundary conditions, and the solution to

these equations can usually be implemented more efficiently than automatically generated

adjoints of the discretized model.

We present the continuous adjoint equation first. Then we consider the adjoint of the

discretized governing equation as is generated by the Tangent Adjoint Model Compiler

(TAMC) (Giering and Kaminski , 1998). In Section 4 we compare the results of each

approach using a sample system representative of atmospheric aerosols.

2.3.2 Continuous adjoint equations

For the continuous adjoint equations, we consider the case where the model parameters

are simply the initial distributions of each species,

χ = pi(µ, 0) = p0
i .

The equation adjoint to (2.1) is

∂λi

∂t
= −

n∑
j=1

λjHj − p

n∑
j=1

λj
∂Hj

∂pi
− 1

3

n∑
j=1

pj
∂λj

∂µ

∂H

∂pi
− H

3
∂λi

∂µ
− ∂J0

∂pi
, (2.5)
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the derivation of which is given in Appendix A. The adjoint equation is integrated backward

in time from the “initial conditions”

λ(µ, T ) = 0

to the “final conditions”

λi(µ, t0) = ∇p0
i
J (2.6)

to solve for the adjoint variable λ(µ, t) at t = 0, which we see from (2.6) is the gradient of

the cost function with respect to the initial distribution.

Although we have derived the adjoint equation (2.5) in continuous form, the continuous

method is, in practice, still a hybrid of continuous and discrete calculations. The nonlinear

dependence of H upon pi(µ, t) for growth laws such as that given by (2.2) makes the ∂H
∂pi

term of the adjoint equation (2.5) difficult to evaluate using continuous equations; therefore,

automatic differentiation is used to calculate this term. (This nonlinearity also makes it

difficult to distinguish between those variations in H caused by variations of parameters

within the growth law, and those caused by variations in pi(µ, t), which is why we have

limited the scope of the continuous analysis to χ = p0
i .) In addition, both continuous

forward and adjoint equations are eventually integrated numerically, further blurring the

distinction between the continuous and discrete approaches.

2.3.3 Discrete adjoint equations

In this section we explicitly derive the discrete adjoint formulas to illustrate the differences

between the continuous and discrete approaches. The actual formulas used were created

automatically using TAMC. A complete explanation of the theory and algorithms used in

TAMC is given by Giering and Kaminski (1998).

We begin with a discretized form of the governing equation, which we shall represent



21

below as

[pi]kj = Fj(pk−1
i , gk−1

i ) , k = 1, . . . , N , i = 1, . . . , n , j = 1, . . . , s . (2.7)

where [pi]kj is the concentration of species i in the jth bin at time step k, pk
i is the vector of

all particulate concentrations, gk
i is the vector of all gas concentrations, and Fj represents

the numerical operator describing gas / particle transport and advection in diameter space.

An informative example to consider is when the observations are simply the concentrations

at the final time step, and the only recoverable parameters are the initial conditions. In

this case, Ω = {N}, h is simply an identity, and, ignoring background terms, the cost

function can be written as

J (p0
i ) =

1
2

s∑
j=1

n∑
i=1

([yi]Nj − [pi]Nj )T R−1
N ([yi]Nj − [pi]Nj ). (2.8)

The desired quantity to be computed is the derivative of the cost function with respect to

changes in the vector of initial conditions,

∇p0
i
J =

∂J (pN
i )

∂p0
i

. (2.9)

Using the chain rule (in its transposed form), one can expand the RHS of (2.9)

∇p0
i
J =

[
∂p1

i

∂p0
i

]T [
∂p2

i

∂p1
i

]T

· · ·

[
∂pN

i

∂pN−1
i

]T [
∂J (pN

i )
∂pN

i

]
(2.10)

Evaluation of the RHS of (2.10) from right to the left corresponds to calculating ∇p0
i
J via

the adjoint method, while calculating this series of matrix products from left to right con-

stitutes a forward sensitivity calculation. Careful consideration of the number of required

scalar multiplications shows that the computational demands of the adjoint method are

significantly less than those of the forward method when the dimension of J is smaller
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than the dimension of p (Kaminski et al., 1999; Sandu et al., 2003). Since in this case J

is a scalar and p has n× s elements, calculating this series of matrix products in reverse is

preferable.

Defining the discrete adjoint variable as

λk =
[
∂pN

i

∂pk
i

]T [
∂J (pN

i )
∂pN

i

]
= ∇pk

i
J (2.11)

and initializing λk as λN = ∇pN
i
J , λ0 = ∇p0

i
J can be found iteratively (beginning with

k = N and ending with k = 1) using the following expression

λk−1 =

[
∂pk

i

∂pk−1
i

]T

λk. (2.12)

In this manner, the adjoint method is reduced to calculating ∂pk
i

∂pk−1
i

= ∂Fj(p
k
i ,gk

i )

∂pk−1
i

at each step.

Fj(pk
i , g

k
i ) is implemented using standard FORTRAN constructs such as loops, condition-

als, basic functions and algebraic manipulations, for which algorithms for calculating the

derivatives are known (Giering and Kaminski , 1998; Giles et al., 2003), hence the adjoint

code can be constructed automatically. One potentially problematic routine in Fj(pk
i , g

k
i )

is the Bott-advection scheme: the positive-definite constraints contain many evaluations

of min / max statements, whose derivatives are undefined if the arguments are equal. To

avoid this problem, we use double precision floating point numbers and resign ourselves to

arbitrarily choosing the path of dependence in the rare case that the arguments are exactly

equal.

Due to the nonlinear nature of Fj(pk
i , g

k
i ) introduced by the dynamic time step and

nonlinearities in the growth law, ∂Fj(p
k
i ,gk

i )

∂pk−1
i

will depend upon pk
i and gk

i , hence their values

from the forward trajectories will be required at each step of the iteration. This can lead to

significant storage requirements and read / write demands for full-scale models with many

components in many cells. Similar situations have been handled gracefully by checkpointing
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schemes which minimize these types of computational demands (for example Elbern and

Schmidt (1999), or the distributed scheme implemented for a parallel model of Sandu et al.

(submitted 2003)); these techniques could be applied to the aerosol adjoint model as well.

2.4 Inverse modeling of aerosol size-composition dynamics

In order to assess the various adjoint models, we perform multiple twin experiments on a

test system that consists of three species whose properties are designed to be representative

of conditions commonly encountered in atmospheric aerosols. Observations are sampled

from the reference, or true, solution generated using the forward model. The simulation is

repeated with perturbed values of the parameters, and the reference values are recovered

through inverse modeling. The adjoint method is used to calculate the gradient of the cost

function with respect to the initial distributions and/or pure species vapor concentrations.

The cost function is then minimized using a limited memory BFGS algorithm (Byrd et al.,

1995; Zhu et al., 1994), providing optimized estimates of the desired quantities.

To simplify the calculations, the components of the test system are assumed to have

ideal thermodynamic properties. Ignoring surface tension and non-ideal effects, Raoults

law and the ideal gas equation can be used to express the surface vapor concentration as

a function of the particle composition,

ci = xic
◦
i

where xi is the aerosol phase mole fraction and c◦i is the pure component vapor concentra-

tion of species i. If we assume, for simplicity, that each species has equal molecular mass,

then the fractions are equivalent to the mass fractions, and the growth rate can be written

as

Hi =
2πDpDi

m(1 + 2`
αDp

)
(gi −

pi∑n
i=1 pi

c◦i ) (2.13)
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The initial conditions for the reference (true) solution used throughout this study are

given in Table 2.1, and the physical properties of the aerosols are α = 0.1, ` = 65 nm,

and Di = 1 × 10−5 m2/s. In the aerosol phase, each species is initially log-normally

distributed: species 1 is located in the smaller bins, species 2 in the larger bins, and species

3 across all bins. The gas-phase concentrations and pure component vapor concentrations

are selected such that species 1 condenses and species 2 evaporates, while the third species

is nonvolatile. Frames (a) - (c) of Figure 2.1 show the reference run at t = 0, 15 min, and 2.5

h, respectively. Most of the progress towards an equilibrium distribution is made during the

first 15 min. Frame (d) shows the time evolution of the gas phase concentrations. Species

1 condenses before species 2 evaporates because gas / particle transport takes longer for

the larger particles. The initial decrease in the vapor concentration of species 2 occurs

because its mole fraction is very low in the smaller particles, causing the effective surface

vapor concentration for these particles to be lower than the surrounding gas concentration.

For use with the discrete adjoint model, the time step for the forward numerical sim-

ulation is adjusted dynamically to be as long as possible while still meeting the following

criteria: it always satisfies the Courant stability condition, and it is sufficiently small to

justify operator splitting. After an initial brief period during which most of species 1 con-

denses, the time step levels off to a value of ∼ 18 s, leading to a simulation in which 50

steps span ∼ 15 min.

The continuous adjoint equation (2.5) for the forward model is solved using finite dif-

ferences. Due to the nonlinearity of (2.1), solving the adjoint equation requires values from

the forward solution. Rather than allow each integration to have a different time stepping

scheme, and then attempt to match the trajectories by interpolating, it is preferable to use

a static time step for both forward and backward runs. In order to avoid the possibility

of either solution becoming unstable, the time step is fixed at 5.0 s. Consequently, the

number of time steps required to run the continuous model is almost four times greater

than that required to run the discrete model.
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Multiple assimilation studies were performed using the test system described above.

The studies were grouped into four scenarios according to how much information was

initially known and how observations were used to recover the unknown data. As the

primary interest was investigation of formulation of the inverse modeling problem, we did

not explore variations in the complexity of the aerosol distribution in order to keep the

forward model consistent from case to case. Discrete adjoint codes were generated using

TAMC for each scenario. Reconstructing the adjoint model for each set of dependent and

independent variables did not present a major challenge, as the calculation of an adjoint

model of this system using TAMC takes less than a few minutes.

Table 2.3 summarizes the conditions and results of each of the cases considered. The

RECOVER column lists which parameters were being assimilated; the numbers refer to

species whose initial distribution (p0
i ) or pure surface concentrations (c◦i ) were unknown.

The initial guesses for these unknown parameters are given in the GUESS column. The

notation ×(a, b, c) indicates that the initial guess was equal to the true value multiplied

by a factor of a, b, c for the 1st, 2nd and 3rd species, respectively, while +(a, b, c) implies

that the true values were amended by these amounts. The extent to which details of the

reference solution were included as observations is summarized by the three columns under

the OBSERVE heading. The numbers in the bin column indicate which of the bins were

observed (terms like 12 indicate that only the total concentration in bins 1 through 2 was

known), and the numbers in the species column indicate which species were measured. The

ratio in the time column is the time between observations over the total simulation time

(both in minutes). The R column gives the results of each test. A scalar measure of the

relative success of the data assimilation is the percent of the error in the initial guess that

is still present after optimization,

R(z) =

[∑
bins/species(zoptimized − ztrue)2∑

bins/species(zguess − ztrue)2

]1/2

(2.14)
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where z is either p0
i or c◦i . Low values of R imply that either the initial guess was extremely

bad or the assimilation converged to the true value.

As the entire assimilation procedure depends critically upon the minimization of J , it

is worth digressing momentarily to discuss some features of the cost function that arise in

inverse aerosol modeling. Consider the full cost function given in (2.4). Rigorous treat-

ment of the cost function for the test problem would require generation of fictitious error

covariance such that Rk and B can be defined. However, realistic values of Rk and B

will be highly case dependent in any assimilation involving real data, hence they will be

implemented herein less formally in order to focus on construction of the adjoint model

in general. Within the twin experiment framework, the observations can be considered

to be exact and independent, hence Rk reduces to the identity matrix. For assimilation

cases in which we limit ourselves to observations in only a subset of the species or bins, the

corresponding diagonal element of Rk will be zero. Since all the weight factors are then

either zero or one, this can be equivalently represented by writing the summations in (2.4)

over only the observed species / bins. In most cases considered, the cost function does not

penalize departure from the background estimates since we know that the observations are

correct while the initial guesses are wrong. Leaving out the first term of (2.4) is equivalent

to letting B go to ∞. Exceptions to this arise in Case 4, where we have reason to believe

that the background estimate of the initial distribution is functionally more appropriate

than the converged solution. For such cases, which are, in general, underdetermined, pre-

conditioning of the cost function (i.e. including the penalty term 1
2(χ− χb)T B−1(χ− χb))

may be appropriate.

Finally, let us consider issues that arise for real aerosol inverse modeling. Even for

inverse modeling studies of real systems, Rk and B are commonly taken to be diagonal

(Mendoza-Dominguez and Russell , 2000, 2001). Furthermore, it is often assumed that all

elements of B are equal so that the entire matrix can be characterized by a single parame-

ter, the so called ridge regression parameter. Much attention has been given to methods for
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estimating the optimal value of this parameter. For aerosol inverse modeling these assump-

tions may not be valid. Significant observational error covariance will exist between species

which are not measured independently, but are inferred on the basis of charge equilibrium

(for example, nitrate concentrations are often inferred from the measured amounts of sul-

fate and ammonium). Furthermore, it will be likely that the background terms for some

species (for example sulfates) will be known with relatively small variance, while others

will have very large variance (SOA), hence B will likely not be simply a scalar multiple of

the identity matrix. Overall, inverse aerosol problems are likely to be ill-conditioned due

to the model resolution in the size domain being much more refined than the observational

resolution. One possible alternative which avoids having to introduce additional bias via

Rk and B is to simply halt the optimization process before the cost function is completely

minimized, as conjugate gradient methods will minimize along the largest regular vectors

first.

2.4.1 Case 1: Recovery of initial distributions

The most important aspect of the data assimilation is the ability to recover the initial

distribution, as determination of other parameters is dependent upon the adjoint of the

concentration variable. Case 1a is the easiest test, with all 3 species being measured in all

8 bins and all the surface concentrations considered known. Cases 1a-c.i used the discrete

adjoint model while cases 1a-c.ii used the continuous adjoint model. The reference, guessed,

and optimized initial distributions for cases 1a.i and 1a.ii are shown in Figure 2.2. Both

adjoint models recover the true distribution very well, and the continuous model converges

more completely than the discrete model in this case. Considering a longer assimilation

period (40 min), yet still only making an observation at the final time, the results of

Case 1b.i and 1b.ii (given in Table 2.3 but not plotted) show that in this situation the

discrete model optimizes to a more accurate set of initial distributions. In Case 1c, the

simulation time is 2.5 h, but observations are still taken every ∼ 15 min. Figure 2.3 shows



28

that the optimized p0
i are greatly improved over the initial guess, yet still noticeably far

from the true distribution. Overall, when the interval between consecutive observations

is relatively short (∼15 min), the continuous method provides better estimates than the

discrete method; however, the opposite becomes true as the distribution of observations

becomes increasingly sparse. Given only a single observation over a period of 2.5 h, the

discrete model performs much better than the continuous model (Case 1d, see Figure 2.4).

While even the longer assimilation periods considered here are much shorter (tempo-

rally) than can be expected for assimilations involving actual data and real species, this is

only an artifact of the arbitrary environmental conditions used for this test case. A more

relevant (and general) measure of the assimilation period is the number of numerical inte-

gration steps taken between observations. Examining assimilation intervals of 50, 150 and

500 time steps over a length of up to 500 steps covers a wide range of potential models and

sets of observational data. For example, a local urban aerosol model that is run for a few

days typically employs time steps on the order of minutes and is compared to observations

taken during intervals on the order of hours. For large scale regional models that are run

for months, time steps are typically on the order of hours and observation intervals on the

order of days.

In order to test the validity of the tangent linear approximations inherent in the adjoint

model over the assimilation period, the gradient was also calculated using finite differences

with a perturbation of 10−9. Figure 2.5 shows the relative reduction in the cost function

after the first optimization step, ∆ = J 0−J 1

J 0 × 100%, as a function of the total number

of steps in the assimilation period. The adjoint gradient becomes increasingly inaccurate

beyond ∼ 250 steps. As the aerosol distribution approaches equilibrium, the assimilation

becomes increasingly difficult.

In addition to comparing the ability of the two types of adjoint models to recover

the initial distributions, it is important to compare the computational expense of each

approach. The total optimization expense ratio is ηtot, where
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ηtot =
Total computational time (discrete)

Total computational time (continuous)
(2.15)

Let tf be the time for the forward calculation, tb be the time for the backward calculation,

and NJ be the number of cost function evaluations during minimization. Noting that

the total computational time for each test is approximately equal to NJ ∗ (tf + tb), this

ratio can be further broken down into a product of ratios which are fairly consistent in

magnitude throughout each test, and whose smallness indicates the degree to which the

discrete calculation is preferable.

ηtot = ηJηfηb (2.16)

where

ηJ =
NJ(d)
NJ(c)

ηf =
tf (d)
tf (c)

ηb =

(
1 + tb(d)

tf (d)

)
(
1 + tb(c)

tf (c)

)
The values of each ratio are given in Table 2.2. Considering tb/tf to be a measure of

the efficiency of the backward calculation with respect to the forward calculation, the

large values of ηb indicate that the backward calculation is much more efficient for the

continuous model than the discrete model. However, as indicated by ηJ , the gradients

from the continuous model are not as accurate as those from the discrete model. Both

these results are consistent with what one would expect from these two types of models.

Simplifications made to derive the adjoint equations in continuous form lead to faster

calculations that are more approximate in nature.

In addition to analyzing the fundamental capabilities of the adjoint method in this test

system, we would like to make recommendations for the direction of future work involving
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more sophisticated aerosol models. As the complexity of the model increases, a continuous

derivation will require an increasingly large number of approximations, leading to adjoint

times that are faster, yet gradients that are not as accurate; hence, we speculate that ηf

will decrease and ηb will increase. If, to a first order, these effects cancel each other out,

the overall efficiency of a more complex aerosol model will depend upon ηf . In this simple

model, ηf is ∼ 1/4 because the average time step taken in the discrete model is about

four times as long as the static time step set in the continuous model. For detailed aerosol

models, the range of the dynamic time step can span several orders of magnitude. Using

a static time step will force the forward calculation for the continuous model to be much

slower than the forward calculation for the discrete model, causing ηf , and likely ηtot, to

be less than unity by several orders of magnitude. To avoid this, one could use dynamic

time steps for both forward and backward runs of the continuous model; however, the

interpolation process required to utililize data from the forward trajectory when solving

the adjoint equation may increase the error in the resulting gradient. While there are no

inherent restrictions on the types of time steps that can be used to solve the continuous

equations, these issues can complicate their implementation. In short, the discrete adjoint

formulation appears to be the more viable method.

2.4.2 Case 2: Recovery of pure species vapor concentrations

The next set of tests examines the situation in which the initial distributions of all the

components are known, but the pure component surface vapor concentrations are not.

The value of R(c◦i ) for Case 2a is 0.00 because the true values of c◦i are recovered to at

least six significant digits. For example, the optimized value of c◦1 is 1.0000028. Case 2b

considers the situation in which the initial guesses for c◦i are such that the overall transport

of each species is in the opposite direction than in the true solution. For example, with c◦1

= 20 µg/m3, species 1 evaporates instead of condensing. Again, the optimized c◦i matches

the true value to at least six significant digits, indicating that c◦i can be recovered even
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when the overall direction of the mass transport is not known before the initial analysis.

2.4.3 Case 3: Recovery of initial distribution and vapor concentrations

The third scenario addresses a common question encountered in aerosol measurement —

based upon accurate information of a subset of the aerosol components, what can be

inferred about an unmeasured species? In this set, no information about species 1 is used

in performing the assimilation, and the cost function is

J (p0
i ) =

1
2

s∑
j=1

n∑
i=2

([yi]Nj − [pi]Nj )2.

Results for Case 3a indicate that both p0
1 and c◦1 can be recovered simultaneously. While

these results look promising, to say that “nothing” was known about species 1 is perhaps

misleading in that the initial guess for p0
1 had the same shape as the true solution, greatly

facilitating the assimilation. This being said, it is interesting to note that it is not necessary

to precondition the cost function in order to converge to the correct distribution because

the problem is overdetermined in this case.

To determine how much the success of the assimilation depends upon the shape of the

initial guess, Case 3b starts with p0
1 being a constant value of 5 µg/m3 throughout the size

distribution. Not surprisingly, with such a poor initial guess, the performance is drastically

decreased, as indicated by R(p0
1) = 0.49. However, a plot of the initial distribution shows

that the assimilation is very successful for all parameters except the concentrations in the

two largest size bins (Figure 2.6(i)). To understand why this would be the case, it is useful

to recall that the driving term for the discrete adjoint model is ∂J (pN
i )

∂pN
i

. In other words,

the adjoint model is forced by the difference in the concentration of the observed species

between the guessed and the reference solutions at the time when the observations were

made. For Case 3b, the simulation results at t = 15 min are shown in Figure 2.6(ii), and we

see optimization of p0
1 in bins 7 and 8 was stopped prematurely because there was no longer
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any driving force for the adjoint model; the optimized solution had already converged to

the true value. Since the characteristic time for condensation / evaporation in bin 7 is

several hours, the concentrations in the larger bins had yet to change significantly after

only 15 min. In this situation, as confirmed by the results of Case 3c, it is advantageous to

run the simulation longer before taking an observation in order to provide ample forcing

for the adjoint model. On the other hand, if the observation time is delayed too long, the

assimilation would become impossible (imagine trying to determine the initial condition

for an aerosol that has equilibrated to an evenly distributed profile), as indicated by Figure

2.5.

2.4.4 Case 4: Recovery from partial distributions

In addition to considering variations in the observation frequency and species detection, it

is of interest to examine the performance of the data assimilation when only portions of the

size distribution are measured. Scenario 4a addresses the situation in which observations

are made only in the smaller four size bins,

J (p0
i ) =

1
2

s/2∑
j=1

n∑
i=1

([yi]Nj − [pi]Nj )2

Based upon this information, the initial concentrations in the larger bins were determined

and are shown in Figure 2.7(a). At first glance, the results appear to be fairly poor; however,

one must take into account the direction that each species is advecting. Considering the

initial guess as a perturbation of the reference solution, the effect that this perturbation

has on the concentrations in the smaller four bins is the driving force for the adjoint model.

For species 1, the lower half of the distribution is largely invariant to perturbations in the

upper four bins because this component is growing. However, for species 2, particles are

evaporating and advection is bringing information about the contents of bins 5-8 to bins

1-4, hence we would expect the assimilation to have performed better for species 2 than
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for species 1. Indeed this is the case. Providing further forcing by running the simulation

longer also leads to better results (Case 4b), and not surprisingly, if distributions 1 and 3

are considered known, then the assimilation of species 2 is even more improved (Case 4c,

Figure 2.7(c)).

Tests 4d-f address cases in which the observed concentrations are actually sums over

two or more adjacent size bins. Since the observations are no longer exactly equivalent to

the state variables, this averaging is represented by the function h in the cost function,

J (p0
i ) =

1
2

2∑
j̄=1

([y]Nj̄ − hj̄([p]Nj ))2,

where j̄ is the index of the lumped bins. In Case 4d, each pair of adjacent bins is averaged,

while in 4e the observed distribution is of only two bins—one that contains particles whose

diameter is smaller than 2.76 µm, and one that contains particles that are larger. The

adjoint method is only able to resolve the initial distributions to a level consistent with the

resolution of the initial guess. Given an initial guess that is resolved on the scale of an 8-bin

distribution, the assimilations are fairly successful. However, the optimized distributions

become increasingly featureless as the resolution of the initial guess is decreased, see Figure

2.8. In order to avoid optimizing to erroneously smooth or jagged distributions, the solution

can be constrained by including the penalty term in the cost function. While this approach

biases the final estimate, this may be appropriate when there is sufficient information known

about the true distribution to quantitatively estimate the error covariance matrix B of the

initial guess.

2.5 Conclusions

As part of a broad effort to better the understanding of the state of the atmosphere using

inverse modeling techniques, this paper focused on the specific goal of incorporating mul-

ticomponent, size resolved aerosols in data assimilation studies. The adjoint method has
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been explored as a means of recovering parameters of an aerosol distribution evolving by

condensation / evaporation. Within the field of adjoint modeling, we have explored two

general tactics for creating the inverse model—discrete and continuous. Evaluating these

methods with a simplified, yet representative, model of an atmospheric aerosol, we have

attempted to recover parameters of the distribution by assimilating observations that are

sparse in time, size and / or chemical resolution.

Intricacies of what was still a simple test model (compared to the aerosol routines im-

plemented in detailed CTMs) limited the feasibility of formulating the adjoint equations

in an entirely continuous fashion. In particular, nonlinearities introduced by the particle

growth rate limits the extent to which the continuous equations can be derived in full.

Nonetheless, the results of problems that have been addressed using the continuous ap-

proach are comparable to those found the using discrete approach. However, the flexibility

of discrete adjoint models, combined with the ease of creating them automatically using

programs such as TAMC, makes them the more viable method for solving inverse problems

involving increasingly complex aerosol systems.

In the test problem considered, we attempted to recover parameters such as the initial

distribution and the species’ pure surface concentrations. Either of these were easily re-

covered for all three species when at least one observation of the entire distribution was

known sufficiently prior to equilibration. Additionally, if both of these properties for a

single species were unknown, and this species was never even observed, the adjoint calcu-

lations allowed us to adequately infer this information from measurements of the dynamic

evolution of the other two species. The most difficult task attempted was the recovery of

initial distributions when observations were known in only a subset of the size range, or

when the initial estimates were exceptionally poor. For understandable reasons, this type of

assimilation required the most observational information in order to yield decent estimates

of the aerosol parameters. Overall, we demonstrated that given ample observations and

reasonable initial estimates, the adjoint method can be used to recover information about
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a dynamic, size and chemically resolved aerosol distribution under a variety of conditions.

Appendix 2.A Derivation of continuous adjoint equation

We will use the Lagrangian multiplier method to derive the continuous adjoint derivations.

The cost function is defined as

J =
∫ T

t0

∫ ∞

0
J0(p1(µ, t), p2(µ, t), . . . , pn(µ, t)) dµ dt

−
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)(LHSpi −RHSpi) dµ dt, (A-17)

Here LHSpi and RHSpi refer to the left side and right side of (2.1), respectively. J0 is the

local cost function component,

J0 =
1
2

n∑
i=1

(yi − h(pi))T R−1
k (yi − h(pi))δ(t− tk), (A-18)

where tk ∈ Ω, and Ω is the set of discrete time points tk for which data are known. Taking

the variation of (A-17), we get

δJ =
∫ T

t0

∫ ∞

0

n∑
i=1

∂J0

∂pi
δpi(µ, t) dµ dt

−
∫ T

t0

∫ ∞

0

n∑
i=1

δλi(µ, t)(LHSpi −RHSpi) dµ dt

−
∫ T

t0

∫ ∞

0

n∑
i=1

λi(µ, t)δ(LHSpi −RHSpi) dµ dt (A-19)

Inserting the expressions of LHSpi and RHSpi , (A-19) can be written as

δJ =
∫ T

t0

∫ ∞

0

n∑
i=1

∂J0

∂pi
δpi(µ, t) dµ dt
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−
∫ T

t0

∫ ∞

0

n∑
i=1

δλi(µ, t)(LHSpi −RHSpi) dµ dt

−
∫ T

t0

∫ ∞

0

n∑
i=1

λi(µ, t)δ(
∂pi(µ, t)

∂t
−Hi(µ, p1, p2, · · · , pn, t)p(µ, t) +

1
3

∂

∂µ
(Hpi)) dµ dt

(A-20)

Then we can re-write (A-20) as

δJ =
n∑

i=1

∫ T

t0

∫ ∞

0
δpi(µ, t)

∂J0(µ, p, t)
∂pi

dµ dt

−
n∑

i=1

∫ T

t0

∫ ∞

0
δλi(µ, t)(LHSpi −RHSpi) dµ dt

−
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)

∂(δpi(µ, t))
∂t

dµ dt

+
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)Hi(µ, p, t)

n∑
j=1

δpj(µ, t) dµ dt

+
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)

n∑
j=1

∂Hi(µ, p, t)
∂pj

δpjp(µ, t) dµ dt

−1
3

n∑
i=1

∫ T

t0

∫ ∞

0
λi(µ, t)

∂

∂µ

 n∑
j=1

∂H(µ, p, t)
∂pj

δpjpi + H(µ, p, t)δpi

 dµ dt

(A-21)

If we choose the final condition λ(µ, T ) = 0, and integrate the third term on the righthand

side of equation (A-21) by parts, this term becomes

n∑
i=1

∫ ∞

0
λi(µ, t0)δpi(µ, t0) dµ +

n∑
i=1

∫ T

t0

∫ ∞

0
δpi(µ, t)

∂(λi(µ, t))
∂t

dµ dt (A-22)
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Likewise, letting λi(0, t) = 0, pi(+∞, t) = 0, the sixth term on the right-hand side of

equation (A-21) can be written as

1
3

n∑
i=1

∫ T

t0

∫ ∞

0

∂λi(µ, t)
∂µ

pi

n∑
j=1

∂H(µ, p, t)
∂pj

δpj + H(µ, p, t)δpi

 dµ dt (A-23)

If p(µ, t) is the solution of (2.1), LHSpi −RHSpi = 0, then

δJ =
n∑

i=1

∫ T

t0

∫ ∞

0
δpi(µ, t)

∂J0(µ, t)
∂pi

dµ dt

+
n∑

i=1

∫ ∞

0
λi(µ, t0)δpi(µ, t0) dµ

+
n∑

i=1

∫ T

t0

∫ ∞

0

∂λi(µ, t)
∂t

δpi(µ, t) dµ dt

+
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)Hi(µ, p, t)

n∑
j=1

δpi(µ, t) dµ dt

+
n∑

i=1

∫ T

t0

∫ ∞

0
λi(µ, t)

n∑
j=1

∂Hi(µ, p, t)
∂pj

p(µ, t)δpj dµ dt

+
1
3

n∑
i=1

∫ T

t0

∫ ∞

0

∂λi(µ, t)
∂µ

n∑
j=1

∂H(µ, p, t)
∂pj

δpjpi dµ dt

+
1
3

n∑
i=1

∫ T

t0

∫ ∞

0

∂λi(µ, t)
∂µ

H(µ, p, t)δpi dµ dt

(A-24)

Assigning the coefficient in front of δpi to 0 results in the adjoint equation,

∂λi

∂t
= −

n∑
j=1

λjHj − p
n∑

j=1

λj
∂Hj

∂pi
− 1

3

n∑
j=1

pj
∂λj

∂µ

∂H

∂pi
− H

3
∂λi

∂µ
− ∂J0

∂pi
(A-25)
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Figure 2.1: The forward model calculation (reference solution). Species 1 is condensing,
species 2 is mostly evaporating, and species 3 is inert. Plotted are the aerosol size distri-
butions at t = 0 (a), t = 15 min (b), t = 2.5 h (c), and the gas-phase concentrations as a
function of time (d).
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Figure 2.2: Case 1a: Simultaneous recovery of the initial distribution of all three species
from an observation at the final time (15 min) using the discrete adjoint model (i) and the
continuous adjoint model (ii). The continuous model performs slightly better, primarily
in the lower bins for species 1 and 3.
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Figure 2.3: Case 1c: Simultaneous recovery of the initial distributions of all three species
from 10 observations taken every 15 min over the course of 2.5 h using the discrete adjoint
model (i) and the continuous adjoint model (ii). Overall performance is similar between
the two approaches.
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Figure 2.4: Case 1d: Simultaneous recovery of the initial distributions of all three species
using only one observation after 2.5 h. Results are shown for the discrete adjoint model (i)
and the continuous adjoint model (ii), from which the superior performance of the former
for this case is quit evident. Species 3 is omitted from the plots for clarity.
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Figure 2.5: Case 1d: Simultaneous recovery of the initial distributions of all three species
using only one observation at the final time step (x-axis). Plotted is the relative reduction
of the cost function after the first minimization step, ∆ = J 0−J 1

J 0 × 100%, as a function of
the assimilation period. The accuracy of the gradient computed using the adjoint method
(+) is seen to decay in comparison to that from the finite difference calculation (o) as the
distribution approaches equilibrium.
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Figure 2.6: Case 3b: Recovering the initial distribution of species 1 from an observation
of species 2 and 3 at the final time (15 min). Shown are the aerosol size distributions of
species 1 at t = 0 (i) and of species 2 and 3 at t = 15 min (ii).
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Figure 2.7: Case 4: Recovering initial distributions using only data from the smaller four
size bins. The results for Case 4a (recovery of all three initial distributions simultaneously)
and Case 4c (recovery of only the initial distribution of species 2) are shown in frames (a)
and (c), respectively. Species 3 is omitted from the plots for clarity.
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Figure 2.8: Case 4: Simultaneous recovery of the initial distribution of all three species
from observations of the total particulate concentration in bins 1 - 6 and bins 7 - 8 using a
log normal initial guess and (e) a flat initial guess (f). Species 3 is omitted from the plot
for clarity.
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Table 2.1: Test problem specifications. Initial gas phase concentrations (gi), pure com-
ponent surface vapor concentrations (c◦i ), and parameters of the initial log-normal dis-
tribution: total concentration (pi), mean particle diameter (D̄p), and standard devation
(σ).

Species gi [µg/m3] c◦i [µg/m3] pi [µg/m3] D̄p [µm] σ

1 10.0 1.0 20.0 0.3 2.8
2 1.0 10.0 20.0 2.3 2.8
3 0.0 0.0 10.0 1.0 10.0

Table 2.2: Timing ratios for comparing the discrete to the continuous adjoint model, as
defined by eq (2.16). Values less than one indicate the discrete model is preferable.

Case ηtot ηJ ηf ηb

1a 2.2 0.8 0.3 8.3
1b 1.4 0.9 0.2 8.3
1c 1.6 0.6 0.3 8.2
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Chapter 3

Development of the Adjoint of
GEOS-Chem1

3.1 Introduction

Chemical transport models (CTMs) enhance our ability to understand the chemical state of

the atmosphere and allow detailed analysis of issues ranging from intercontinental pollution

transport to the coupling of anthropogenic processes, regional pollution and climate change.

Of particular interest in these realms is explicit consideration of the role of aerosols, the

importance of which is well documented. Given the substantial uncertainty that remains

in many aspects of detailed aerosol simulations, it is critical to further examine how the

numerous parameters in such models steer their predictions, especially estimates of emis-

sions inventories for aerosols and their precursors. The complexity of the thermodynamic

and photochemical processes that govern secondary formation of aerosols precludes simple

assessment of the dependence of model predictions on such parameters. Working to arrive

at CTMs that more reliably reproduce observations, adjoint modeling is often employed as

a method for determining the sensitivity of model predictions to input parameters and for

optimizing these parameters to enforce agreement between the model predictions and an
1Henze, D. K., A. Hakami and J. H. Seinfeld, Development of the Adjoint of GEOS-Chem, Atmos.

Chem. Phys., 7, 2413-2433
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observational data set.

Several inverse modeling studies have analyzed sources of aerosols and aerosol precursors

on regional scales. As of yet, most studies have been fairly coarse, limited to optimization

of a few scaling factors for emissions inventories spanning large domains. Park et al.

(2003) used multiple linear regression to estimate annual mean sources of seven types of

primary carbonaceous aerosol over the United States. A Kalman filter approach was used

to estimate improved monthly emissions scaling factors for NH3 emissions over the United

States using observations of ammonium wet deposition in works by Gilliland and Abbitt

(2001) and Gilliland et al. (2003, 2006). Mendoza-Dominguez and Russell (2000, 2001)

optimized domain-wide emissions scaling factors for eight species over the eastern Unites

States using observations of gas-phase inorganic and organic species and speciated fine

particles. Source apportionment models have also been refined using inverse modeling

(Knipping et al., 2006; Schichtel et al., 2006).

Data from satellite observations offer tremendous potential for inverse modeling of

aerosols (Collins et al., 2001; Kahn et al., 2004). In order to best exploit these, and other,

large data sets, it is desired to extend inverse analysis of aerosol models to global scales and

to finer decomposition of the emissions domains. Such goals require consideration of inverse

modeling methods designed for large sets of variable parameters. The adjoint method is

known to be an efficient means of calculating model sensitivities that afford examination

of numerous parameters, where these values can subsequently be used in tandem with an

observational data set for data assimilation. First appearing in the field of atmospheric

science in the early 1970s (Marchuk , 1974; Lamb et al., 1975), the method later came to

be applied extensively in meteorology, e.g., Talagrand and Courtier (1987); Errico and

Vukicevic (1992). In the last decade, the adjoint approach has expanded to include ever

more detailed CTMs, beginning with the abbreviated Lagrangian stratospheric model of

Fisher and Lary (1995) and the Lagrangian tropospheric model of Elbern et al. (1997).

Vukicevic and Hess (2000) used the adjoint method to perform a sensitivity study of an
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inert gas-phase tracer over the Pacific, while Elbern and Schmidt (1999) presented the first

adjoint of a 3-D Eulerian CTM to include chemistry. These initial works have been followed

more recently by similar development and application of adjoint models of several CTMs:

CHIMERE (Vautard et al., 2000; Menut et al., 2000; Schmidt and Martin, 2003), IMAGES

(Muller and Stavrakou, 2005; Stavrakou and Muller , 2006), Polair (Mallet and Sportisse,

2004, 2006), TM4 (Meirink et al., 2005), the California Institute of Technology urban-scale

model (Martien et al., 2006; Martien and Harley , 2006), and DRAIS (Nester and Panitz ,

2006). The adjoint of the regional model STEM also has been developed (Sandu et al.,

2005a) and deployed (Hakami et al., 2005, 2006; Chai et al., 2006).

Of all the previous 3-D adjoint modeling studies, none includes detailed treatment of

aerosols, likely owing to the difficult prospect of deriving the adjoint of the model routines

dealing with aerosol thermodynamics. The study of Hakami et al. (2005) deals only with

inert carbonaceous aerosols, and the work of Dubovik et al. (2004), though global in scale,

does not include full chemistry or aerosol thermodynamics. Detailed adjoint modeling of

aerosols began with the theoretical investigations of Henze et al. (2004) and Sandu et al.

(2005). However, these are preliminary studies performed on idealized box model systems.

In the current work we present the first adjoint of a global CTM that includes dynamics,

full tropospheric chemistry, heterogeneous chemistry, and aerosol thermodynamics. We

demonstrate the potential value of this tool for quantifying and constraining factors that

govern global secondary inorganic aerosol formation. In addition, we note the general

usefulness of the adjoint model of GEOS-Chem for a wide variety of applications, such as

constraining CO emissions using satellite data (Kopacz et al., 20072).
2Kopacz, M., Jacob, D., Henze, D. K., Heald, C. L., Streets, D. G., and Zhang, Q.: A comparison

of analytical and adjoint Bayesian inversion methods for constraining Asian sources of CO using satellite
(MOPITT) measurements of CO columns, submitted, 2007.
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3.2 Forward and inverse models

The GEOS-Chem model is used to simulate global aerosol distributions (version 6.02.05

with a horizontal resolution of 4◦×5◦ and 30 layers up to 0.01 hPa, GEOS-3 meteorologi-

cal fields). This version of the model includes detailed gas-phase chemistry coupled with

heterogeneous reactions, inorganic aerosol thermodynamics, and oxidative aging of car-

bonaceous aerosols (Park et al., 2004). A few of the specific equations for various model

processes are given in Sect. 3.3.3, along with their corresponding adjoints. We note here

that gaseous SO2 and primary sulfate are co-emitted in GEOS-Chem using a single emis-

sions inventory, referred to as SOx, which is partitioned between the two species on a

regional basis, with sulfate comprising 5% of SOx emissions in Europe, 1.7% in North

America, and 3% elsewhere (Chin et al., 2000).

The standard model has been modified to facilitate the specific inverse modeling goals

of the present study. We neglect stratospheric chemistry, which over the course of the

short simulations considered here should not have a substantial impact. The standard

GEOS-Chem tropospheric chemical mechanism comprises 87 species and 307 reactions

integrated using the SMVGEARII solver of Jacobson (1995). We retain this standard

chemical mechanism; however, we implement a different numerical solver. The details of

this are given in Appendix A. To summarize, we implement a 3rd order Rosenbrock solver

that not only facilitates construction of the adjoint model, but also improves forward model

efficiency. We also consider using offline concentrations of sulfate aerosol for calculation of

photolysis rates and heterogeneous reaction probabilities, see Sect. 3.3.5.

3.2.1 Inverse modeling

An adjoint model is used to calculate the gradient of a cost function, J , with respect to a

set of model parameters, p, ∇pJ . For data assimilation applications, the cost function is
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defined to be

J =
1
2

∑
c∈Ω

(c− cobs)TS−1
obs(c− cobs) +

1
2
γr(p− pa)

TS−1
p (p− pa) (3.1)

where c is the vector of species concentrations mapped to the observation space, cobs

is the vector of species observations, Sobs is the observation error covariance matrix, p

is a vector of active model parameters throughout the model domain, pa is the initial

estimate of these parameters, Sp is the error covariance estimate of these parameters,

γr is a regularization parameter, and Ω is the domain (in time and space) over which

observations and model predictions are available. We will sometimes use the notation c and

p to represent single elements of the vectors c and p. Using the variational approach, the

gradient ∇pJ is supplied to an optimization routine and the minimum of the cost function

is sought iteratively. At each iteration, improved estimates of the model parameters are

implemented and the forward model solution is recalculated. In this study, the magnitude

of each variable parameter is adjusted using a scaling factor, σ, such that p=σpa. We use

the L-BFGS-B optimization routine (Byrd et al., 1995; Zhu et al., 1994), which affords

bounded minimization, ensuring positive values for the scaling factors.

Alternatively, for sensitivity analysis, the cost function can be defined as simply a set

of model predictions,

J =
∑
g∈Ωs

g(c) (3.2)

where Ωs is the set of times at which the cost function is evaluated. The desired gradient

values are the sensitivities of this set of model predictions to the model parameters.

3.2.2 Adjoint modeling

Equations for calculating the desired gradients using the adjoint method can be derived

from the equations governing the forward model or from the forward model code. The

prior approach leads to the continuous adjoint, while the latter leads to the discrete adjoint
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(Giles and Pierce, 2000). The continuous adjoint equations for CTMs have been derived

previously, using methods based upon the Lagrange duality condition (Vukicevic and Hess,

2000; Pudykiewicz , 1998; Schmidt and Martin, 2003) or Lagrange multipliers (Elbern et al.,

1997). Continuous adjoint gradients may differ from the actual numerical gradients of

J , and continuous adjoint equations (and requisite boundary/initial conditions) for some

systems are not always readily derivable; however, solutions to continuous adjoint equations

can be more useful for interpreting the significance of the adjoint values. Many previous

studies have also described the derivation of discrete adjoints of such systems (Sandu et al.,

2005a; Muller and Stavrakou, 2005). An advantage of the discrete adjoint model is that the

resulting gradients of the numerical cost function are exact, even for nonlinear or iterative

algorithms, making them easier to validate. Furthermore, portions of the discrete adjoint

code can often be generated directly from the forward code with the aid of automatic

differentiation tools. Here we present a brief description of the discrete adjoint method for

the sake of defining a self-consistent set of notation for this particular paper; we refer the

reader to the cited works for further derivations and discussions of continuous and discrete

adjoints.

The GEOS-Chem model can be viewed as a numerical operator, F , acting on a state

vector, c

cn+1 = F (cn) (3.3)

where c is the vector of all K tracer concentrations, cn=[cn
1 , . . ., cn

k , . . ., cn
K ]T at step n. In

practice, F comprises many individual operators representing various physical processes.

For the moment we will simply let F represent a portion of the discrete forward model

which advances the model state vector from step n to step n+1.

For simplicity, we consider a cost function evaluated only at the final time step N with

no penalty term. We wish to calculate the gradient of the cost function with respect to
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the model state vector at any step in the model,

∇cnJ =
∂J(cN )

∂cn
(3.4)

We define the local Jacobian around any given step as

∂cn+1

∂cn
=

∂F (cn)
∂cn

= Fn
c (3.5)

Using the chain rule, we can expand the right hand side of Eq. (3.4) to explicitly show the

calculation of cN from cn,

∇cnJ = (Fn
c )T (Fn+1

c )T· · · (FN−1
c )T ∂J(cN )

∂cN
(3.6)

Evaluating the above equation from left to right corresponds to a forward sensitivity cal-

culation, while evaluating from right to left corresponds to an adjoint calculation. When

K is larger than the dimension of J , which in this case is a scalar, the adjoint calculation

is much more efficient (Giering and Kaminski , 1998).

For the adjoint calculation, we define the adjoint state variable λn
c ,

λn
c =

∂J(cN )
∂cn

. (3.7)

This can also be expanded,

λn
c =

[
∂cn+1

∂cn

]T
∂J(cN )
∂cn+1

(3.8)

= (Fn
c )T ∂J(cN )

∂cn+1
. (3.9)

The equation above suggests how to solve for the adjoint variable iteratively. Initializing
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the adjoint variable at the final time step

λN
c =

∂J(cN )
∂cN

(3.10)

we solve the following equation iteratively from n=N, . . ., 1,

λn−1
c = (Fn

c )T λn
c (3.11)

The value of λ0
c is then the sensitivity of the cost function with respect to the model initial

conditions,

λ0
c = ∇c0J (3.12)

The scheme above shows why calculating the adjoint variable is often referred to as “reverse

integration” of the forward model, as we step from the final time to the initial time. This

should not be confused with simply integrating the forward model equations backwards in

time.

In order to calculate the sensitivity of J with respect to other model parameters, such as

emissions, similar analysis (see, for example, Sandu et al. (2003)) shows that the gradient

of the cost function with respect to these parameters,

λ0
p = ∇pJ (3.13)

can be found by iteratively solving the following equation,

λn−1
p = (Fn

p )T λn
c + λn

p (3.14)

where the subscripts c and p indicate sensitivity with respect to c and p, respectively, and

Fn
p =

∂Fn

∂p
(3.15)
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When a penalty term is included in the cost function, the gradient becomes

∇pJ = λ0
p + γrS−1

p (p− pa) (3.16)

3.3 Constructing and validating the adjoint of GEOS-Chem

Here we present the derivation of the adjoint of GEOS-Chem. While the adjoint of the ad-

vection scheme is based upon the continuous approach, the remainder of the adjoint model

is based upon the discrete formulation, using automatic differentiation tools for assistance.

We use the Tangent and Adjoint Model Compiler (TAMC (Giering and Kaminski , 1998)),

a freeware multipurpose program, and the Kinetic PrePocessor (KPP (Sandu et al., 2003;

Damian et al., 2002)), a public domain numerical library for constructing the adjoint of

chemical mechanisms. Always some, if not significant, manual manipulation of the code

is required to use such tools. We often combine automatically generated adjoint code

with manually derived discrete adjoint code to improve efficiency and transparency of the

adjoint model.

Validation of the adjoint model is an important part of introducing an adjoint model of

this size and complexity. Discrete portions of the adjoint code have the advantage of being

easily validated via comparison of adjoint gradients to forward model sensitivities calculated

using the finite difference approximation. The hybrid approach adopted here (discrete

and continuous) requires detailed inspection of the adjoint gradients on a component-

wise basis as discrepancies owing to the continuous portion are anticipated to obscure

such comparisons for the model as a whole. Additional motivations exit for checking the

gradients of subprocesses in the model separately and collectively. For large CTMs, it is

not feasible to compare adjoint and finite difference gradients for each control parameter,

as the finite difference calculation requires an additional forward model evaluation per

parameter. However, component-wise analysis affords simultaneous examination of large

numbers of sensitivities throughout the model domain, a much better approach to revealing
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potential errors than performing validation checks in only a few locations. Furthermore, as

GEOS-Chem has many routines common to other models, it behooves us to consider the

adjoint of these routines separately.

Forward model sensitivities, Λ, are calculated using the finite difference (brute force)

method. For component-wise tests of nonlinear routines, Λ is calculated using the two-sided

formula,

Λ =
J(σ + δσ)− J(σ − δσ)

2δσ
(3.17)

while for testing the full model, the more approximate one-sided finite difference equation,

Λ =
J(σ + δσ)− J(σ)

δσ
(3.18)

is used in order to minimize the number of required forward model function evaluations.

The latter method is also adequate for testing linear components of the model. We use

δσ=0.1–0.01 for most tests, which experience showed to be an optimal balance between

truncation and roundoff error. For most of these validation tests, it suffices to use a

simplified cost function that does not depend on any observational data set, as in Eq. (3.2),

defining g to be a predicted tracer mass, either gas- or aerosol-phase, in a single grid cell,

or the total mass burden over a larger spatial domain.

3.3.1 Aerosol thermodynamics

The equilibrium thermodynamic model MARS-A (Binkowski and Roselle, 2003) is used to

calculate the partitioning of total ammonia and nitric acid between aerosol and gas phases.

While it is a relatively simple treatement compared to others such as SCAPE (Kim et al.,

1993) or ISORROPIA (Nenes et al., 1998), the MARS-A model is still fairly complex. It

uses an iterative algorithm to find equilibrium concentrations, considering two primary

regimes defined by the ionic ratio of ammonium to sulfate and several sub-regimes defined

by conditions such as relative humidity.
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Several factors have historically prevented rigorous treatment of aerosol thermodynam-

ics from inclusion in adjoint modeling studies of CTMs, or even adjoint studies of aerosol

dynamics (Henze et al., 2004; Sandu et al., 2005). Division of the possible thermodynamic

states into distinct regimes causes many discontinuities in the derivatives, precluding easy

derivation of continuous adjoint equations and raising doubts to the value of such sensitiv-

ities. Furthermore, several coding tactics often employed in these types of models render

them intractable for direct treatment using automatic differentiation tools.

We develop the adjoint of MARS-A in pieces, separating the model into several subpro-

grams, the adjoints of which are then created using TAMC. Tracking variables are added to

the forward model routine to indicate which of these subroutines to call during the adjoint

calculation. Initial unequilibrated concentrations at the beginning of each external time

step are saved in checkpoint files during the forward calculation. Intermediate values are

recalculated from these during the adjoint integration. This type of two-level checkpoint-

ing strategy has been shown to optimally balance storage, memory and CPU requirements

(Griewank and Walther , 2000; Sandu et al., 2005a).

The accuracy of the resulting adjoint code is tested by comparing adjoint gradients to

finite difference gradients calculated using Eq. (3.17) with δσ = 0.1. These comparisons

can be made directly throughout the entire model domain by turning off all transport

processes. Figure 3.1 shows comparisons for the sensitivity of surface level nitrate aerosol

mass with respect to scaling factors for emissions of surface level anthropogenic SOx and

NH3 after a week-long simulation. The gradients agree quite well, confirming the accuracy

of the thermodynamic adjoint code. Discussion of values of model sensitivities is given in

Sect. 3.4.

3.3.2 Chemistry

KPP (v2.2) (Sandu et al., 2003; Damian et al., 2002) is used to automatically generate

code for the adjoint of the tropospheric chemistry solver, which calculates gradients with
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respect to the initial species concentrations. We are also interested in the gradient with

respect to the emission rates for those species whose emissions are incorporated into the

chemical mechanism itself, such as NOx, (as opposed to those that are simply injected into

the model grid cells at intermediate times, such as SOx). The additional equations for

calculating discrete adjoint gradients with respect to reaction rate constants are derived

in Appendix B. Though these equations have not been presented previously, KPP does

provide the necessary subroutines for solving them.

To assess the accuracy of the adjoints of the chemistry routine, we calculate the sen-

sitivity of the species concentrations at the end of a single chemistry time step (1 h) with

respect to the emissions of NOx (emitted as NO) in a box model test. For this test, the

chemical environment is that of a polluted, urban grid cell in the afternoon. Figure 3.2

shows the ratio λENOx/ΛENOx for three separate cases. Using a two-sided finite difference

calculation (Eq. (3.17)) with δσENOx=0.1 leads to agreement within a few percent. The

dependence of the internal time step on species concentrations is a feedback not accounted

for in the adjoint algorithm; hence, also holding the internal time step fixed at 60 s results

in ratios of nearly 1.000 for all species. For comparison, the ratios when Eq. (3.18) is used

for ΛENOx are also shown, which can differ as much as 8% from unity, demonstrating the

nonlinearity of such chemical systems.

The above test was reassuring, yet limited in scope for a global CTM. To test our

adjoint model over a wide variety of chemical conditions, we also compare the accuracy of

the adjoint derivatives of the chemical mechanism in global simulations over much longer

time scales. We turn off all transport related processes in the model and calculate the

adjoint and finite difference sensitivities of surface level tracer masses with respect to NOx

emissions in each location after a week-long simulation. As lack of transport leads to

unrealistically extreme concentrations, emissions are reduced by an order of magnitude to

prevent the chemical systems from becoming too stiff. Many chemical changes associated

with aerosols are treated separately from the main tropospheric chemistry mechanism in
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GEOS-Chem, such as aqueous reactions, dry deposition, chemical aging, and emission of

SOx and NH3 (Park et al., 2004). The adjoints of these processes are constructed separately

(manually and with TAMC) and included in the following tests.

Figure 3.3 shows the adjoint and finite difference sensitivities of several species with

respect to surface level, anthropogenic NOx emissions scaling factors. We choose to show

sensitivities of species such as acetone and methacrolein to NOx emissions to also highlight

the potential value of the adjoint model for analysis of non-aerosol species. We see from

these, and similar tests for other active species (not shown), that the sensitivities calculated

using the adjoint model consistently agree with those using the finite difference method

over a wide range of conditions.

The code generated by KPP allows computation of either the continuous or discrete

adjoints of the chemical mechanism. The continuous adjoint equation can be solved faster

than the discrete adjoint equation at a given tolerance level, as calculation of the latter re-

quires recalculation of intermediate values from the forward integration and computation

of the Hessian during the adjoint integration, see Appendix B. At tight tolerance levels

(i.e. very small internal time steps), the results of these methods should converge. How-

ever, for tolerance levels appropriate for global modeling, the continuous adjoint is only

approximate, as λ+δλ, where ||δλ||<C·Tol. Given that the computational expense of the

Rosenbrock solver increases substantially for tighter tolerance levels (see Appendix A), it

is more efficient to use the discrete adjoint, even though this requires an additional forward

integration. This is in contrast to the approach of Errera and Fonteyn (2001), who chose to

approximate the necessary intermediate values by linearly interpolating from values stored

at each external time step, an approach likely more appropriate for their stratospheric

chemistry application.

GEOS-Chem accounts for the effect of aerosol concentrations on the radiation available

for photolysis reactions and on the available surface area for the heterogeneous reactions

included in the main chemical mechanism. The influence of the concentration of sulfate-
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ammonium-nitrate aerosols on such rates is not currently accounted for in the adjoint

model. We assume such an effect is less than 5% (Liao et al., 1999; Martin et al., 2003),

especially as the absorbing aerosols (black carbon, mineral dust) are not active variables

during these tests. The general agreement between λ and Λ, only the latter of which

accounts for this effect, indicates this assumption is adequate, at least for simulations of

this length. Further tests indicate that this assumption is valid for most, though not all,

cases, see Sect. 3.3.5.

3.3.3 Convection, turbulent mixing, and wet removal

Wet removal of tracers in GEOS-Chem is generally treated as a first-order process, leading

to discrete forward model equations of the form,

cn+1
k = cn

ke−rw,k4t (3.19)

Since the loss rate rw,k for most species does not depend on any active variables (Jacob

et al., 2000), the corresponding adjoint is simply

λn
k = λn+1

k e−rw,k4t (3.20)

The adjoints of these routines are generated using hand-created code, retaining efficiency

and legibility. However, the in-cloud formation and cycling of sulfate aerosol from SO2

is decidedly nonlinear, as the soluble fraction of SO2 is limited by availability of H2O2,

and a fraction of the SO2 is reintroduced into the gas phase as sulfate when droplets

evaporate (Park et al., 2004). Such nonlinearities that span multiple program modules are

treated both manually and with the help of TAMC, requiring additional recalculation and

checkpointing of intermediate values.

Turbulent mixing in the boundary layer in the forward model is calculated according to
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a mass-weighted mixing algorithm applied every dynamic time step (30 min for our case),

µn+1
k,j =

∑L
l=1 mlµ

n
k,l

mT
(3.21)

where µk,j is the mixing ratio (c/ρ, ρ is the density of air) of tracer k in layer j, ml is the

air mass in a single layer l, mT is the total air mass in the boundary layer column, and

L is the number of layers in the boundary layer. Rewritten in matrix form, this equation

reads, 
µk,1

...

µk,L


n+1

=


m1
mT

· · · mL
mT

...
. . .

...
m1
mT

· · · mL
mT

 ·


µk,1

...

µk,L


n

(3.22)

Direct application of Eq. (3.11) yields the corresponding adjoint equation,


λµk,1

...

λµk,L


n

=


m1
mT

· · · m1
mT

...
. . .

...
mL
mT

· · · mL
mT

 ·


λµk,1

...

λµk,L


n+1

(3.23)

which can be simply written as,

λn
µk,j

=
mj

∑L
l=1 λn+1

µk,l

mT
(3.24)

Deep convection is calculated in the forward model using cumulus cloud fluxes and an RAS

type algorithm, see Appendix A of Allen et al. (1996). We calculate the discrete adjoint

of this scheme using TAMC, noting that TAMC initially generates code that is accurate,

yet several orders of magnitude slower than necessary due to several superfluous loops that

have to be removed manually. The numerical scheme for the forward calculation iteratively

solves a set of essentially linear equations, with an internal time step of five minutes. If we

neglect a single conditional statement that checks only for rare floating point exceptions,
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then storage or recalculation of the intermediate values is not required for the adjoint

calculation.

The adjoint model performance for a simulation including convection, turbulent mixing,

and wet deposition is tested by comparison of finite difference sensitivities to the adjoint

sensitivities of concentrations of a soluble tracer with respect to its initial concentrations

in a location exhibiting strong convection, deposition, and mixing. Horizontal transport,

chemistry, and aerosol thermodynamics are turned off for these tests. We use a perturbation

of one percent for the finite difference calculation. The ratio λc/Λc for simulations that

are 6 h, 1 d and 3 d in length are 0.9998, 1.0002 and 1.0003, from which we see consistent

satisfactory agreement between the two methods. Performance is similar in other tested

locations.

3.3.4 Advection

We implement the adjoint of the continuous advection equations. GEOS-Chem nominally

employs a monotonic piecewise parabolic (PPM) advection routine (Colella and Woodward ,

1984; Lin and Rood , 1996). Below we briefly show how this scheme can be used to solve the

continuous adjoint advection equations and afterwards address some of the issues wedded

to this approach. We consider the 1-D example of the advection equation for a tracer in

mass concentration units,
∂c

∂t
= −∂(uc)

∂x
(3.25)

where u is the wind velocity in the x-direction. The forward numerical model actually

solves the flux form of Eq. (3.25) in terms of the mixing ratio (Lin and Rood , 1996),

∂(ρµ)
∂t

= −∂(ρµu)
∂x

(3.26)
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Assuming that the continuity equation for ρ is satisfied, this can be rewritten in the ad-

vection form,
∂µ

∂t
= −u

∂µ

∂x
(3.27)

Applying the adjoint variable as a Lagrange multiplier and integrating by parts (see, for

example, Appendix A of Sandu et al. (2005a)), the continuous adjoint of Eq. (3.27) is

−∂λµ

∂t
=

∂(λµu)
∂x

(3.28)

where λµ is the adjoint of the mixing ratio. Note that we have assumed that the winds

(or any other met fields) are not active variables; taking the adjoint with respect to the

meteorology is another task in itself (see, for example, Giering et al. (2004)). Applying the

simple transform λ̂µ=λµ/ρ, and substituting this into Eq. (3.28), we arrive at the following

adjoint equation,

−∂(ρλ̂µ)
∂t

=
∂(ρλ̂µu)

∂x
(3.29)

which is similar in form to Eq. (3.26). If we assume that ρ is relatively constant over a single

dynamic time step and that the advection is linear, then we can simply solve Eq. (3.29)

using the same numerical code that was used to solve Eq. (3.26) in the forward model,

scaling the adjoint by 1/ρ before and re-scaling by ρ afterwards, which is equivalent to

solving Eq. (3.28).

While the continuous approach was in part adopted for reasons of practicality (the

discrete advection algorithm in the forward model not being directly amenable for use with

automatic differentiation tools), subsequent investigation indicates that the continuous

approach is suitable, if not preferable. This is not surprising, as it is well documented

that discrete adjoints of sign preserving and monotonic (i.e. nonlinear and discontinuous)

advection schemes are not well behaved and can contain undesirable numerical artifacts,

see for example Thuburn and Haine (2001), Vukicevic et al. (2001), and Liu and Sandu,
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20063.

To illustrate the benefits of the continuous adjoint approach for our system, the follow-

ing numerical test is performed. The sensitivity of aerosol concentrations with respect to

concentrations in a neighboring cell six hours earlier are calculated for a meridional cross

section of the northern hemisphere. To afford simultaneous calculation of finite difference

and adjoint sensitivities throughout this domain, only horizontal advection in the E/W di-

rection is included in these tests. Figure 3.4 shows finite difference sensitivities calculated

using Eq. (3.18) for several values of δσ as well as the adjoint gradients. The undesirable

nature of the finite difference sensitivities is indicated by negative sensitivities that have no

physical meaning. That negative values become more prevalent as δσ → 0 indicates such

values are caused by discontinuities in the discrete algorithm (Thuburn and Haine, 2001).

We can expect that adjoint sensitivities of the discrete advection algorithm would contain

similar features, which, despite being numerically precise gradients of the cost function,

can result in convergence to undesirable local minimums for data assimilation (Vukicevic

et al., 2001). Given the importance of transport for analysis of aerosols, use of the con-

tinuous approach is deemed preferable to implementing a linear transport scheme with

well-behaved discrete adjoints at the cost of forward model performance.

3.3.5 Combined performance

Again we compare the gradients calculated using the adjoint model to those calculated

using the finite difference method, this time including all model processes. We calculate

the sensitivity of global aerosol distributions of sulfate, ammonium, and nitrate to surface

emissions of anthropogenic SOx, NOx and NH3 in select locations. As noted previously,

such comparisons are quite time consuming to perform on a global scale owing to the

expense of the finite difference calculations. Attempting to cover a wide range of conditions,

while keeping the number of required calculations within reason, we choose to analyze ten
3Liu, Z. and Sandu, A.: Analysis of Discrete Adjoints of Numerical Methods for the Advection Equation,

Int. J. Numer. Meth. Fl., submitted, 2006.



67

locations for each set of emissions considered, see Fig. 3.5. The simulations are one day in

length, and the cost function (Eq. 3.2) is evaluated only once at the end of the day. We

use a perturbation of δσ=0.1 and Eq. (3.18) for the finite-difference calculations.

Figure 3.6 shows the adjoint gradients compared to the finite difference gradients for

each of nine relationships. From visual inspection of the scatter plots, it is clear that the

agreement is generally within reason given the fact that using a continuous adjoint for

advection is expected to cause some amount of discrepancy. Regression lines, slopes, and

R2 values are given for each set of comparisons. The absolute difference between the two

methods is often more substantial for the larger values. As the gradients in a given set

usually span several orders of magnitude, many of the slopes are biased by a few such

larger values and are not representative of the overall fit. However, accounting for such

heteroscedasticity by re-scaling the gradients by 1/p or performing weighted regressions

that place less emphasis on the larger values still leads to the same general results. Picking

twice as many test cells, different test cells, or a different value of δσ also was not found

to substantially alter the overall comparisons.

Initial comparison (not shown) of gradients for five of the 90 tests showed underesti-

mation of adjoint sensitivities by more than an order of magnitude. Four of these tests

were for the sensitivity of sulfate with respect to NH3 emissions while one was for the

sensitivity of nitrate with respect to SOx emissions. Using offline concentrations for calcu-

lation of the contribution of sulfate aerosol to photolysis rates and heterogeneous reaction

probabilities in the main tropospheric chemical mechanism for these tests alleviated the

discrepancy, demonstrating that while this feedback is generally negligible, it is occasionally

quite strong. Future work will extend the adjoint model to account for this feedback.

Napelenok et al. (2006) performed a complementary analysis on a regional scale, calcu-

lating the sensitivities of local aerosol distributions with respect to domain-wide precursor

emissions over the United States with a forward sensitivity method (DDM-3D), using finite-

difference calculations to check their results. While they found similarly good agreement for
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the more direct relationships (such as sensitivity of sulfate with respect to SO2 emissions,

or ammonium with respect to NH3 emissions), they had difficulty verifying the variability

in the sensitivities of some of the more indirect relationships (such as the sensitivity of sul-

fate to NH3 emissions or nitrate to SO2 emissions). Granted, they used the more complex

and rigorous thermodynamic model ISORROPIA; they suggested that such discrepancies

were due to numerical diffusion, with spatial oscillations of the sensitivities indicative of

errors due to transport.

In our tests, transport does not drastically degrade the consistency of the correlation

between the two approaches; all of the R2 are near unity. There is, however, some amount

of bias in the comparisons, as indicated by slopes ranging from 0.8 to 1.3, and this does

appear to be a result of transport. Figure 3.7 contains scatter plots of the sensitivities

of sulfate with respect to NOx emissions for several additional tests. Panel (a) shows the

results when advection is turned off. This leads to improved agreement, m=1.03, compared

to the center left panel of Fig. 3.6; hence, the source of this bias is presumably advection. As

shown in Fig. 3.4, the adjoint gradients are likely smoother and more physically meaningful

than the finite difference sensitivities.

To assess the extent to which using the continuous adjoint of advection hinders this

approach to validating the adjoint model as a whole, we perform additional tests, the

results of which are shown in Figure (3.7). Including advection, but evaluating the cost

function only in a single location, rather than globally, leads to a very unsmooth adjoint

field and triggers many nonlinear and discontinuous aspects of the numerical scheme in

a manner inconsistent with advection of the relatively smooth concentration field in the

forward model; hence, agreement between adjoint and finite difference gradients under

these conditions is worse, see panel (b). All of the tests so far have been based on a single

evaluation of the cost function at the end of a day-long simulation. The effects of changing

the assimilation window (the time between consecutive evaluations of the cost function) and

the total simulation length are shown in panels (c) and (d). Doubling both the simulation
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length and the assimilation window to two days leads to an increased discrepancy, panel (c).

Again, such behavior is likely owing to discrepancies between the finite difference and

adjoint sensitivities of the advection scheme that can accumulate when integrating such

sensitivities over several other nonlinear processes. Doubling only the simulation length but

maintaining a one-day assimilation window improves the agreement, panel (d), as forcing

from additional observations outweighs spurious discrepancies from advection.

Finally, we consider a more realistic example. Model predictions are compared to

measurements of aerosol nitrate from the IMPROVE network of monitoring stations

(http://vista.cira.colostate.edu/improve/). The sensitivities of the error weighted squared

difference between predicted and observed nitrate aerosol with respect to natural NH3

emissions scaling factors are shown in Fig. 3.8. The cost function is evaluated regionally

only on the U.S. East Coast (72.5◦ W – 82.5◦ W), and the model is run for ten days starting

Jan 1, 2002. Daily average measurements are assimilated during three of the ten days. Also

shown is a comparison between the adjoint sensitivities and finite difference sensitivities

evaluated for the same domain. That the overall discrepancy is not much different from

the simple 24 h tests (Fig. 3.6, or Fig. 3.7, panel (b)) increases our confidence in the ability

of short tests to diagnose the model’s performance in practical applications.

Overall, we find the accuracy of the adjoint gradients to be satisfactory. The adjoint

model clearly captures the dependence of inorganic aerosol burdens on the chemical and

thermodynamic interactions that lead to their formation. While using the continuous

adjoint of advection makes this verification process more laborious, we have characterized

the discrepancies for future reference.

3.3.6 Computational efficiency

Here we report computational resource requirements for running the adjoint model of

GEOS-Chem on a Linux workstation with dual Intel Itanium 1.5 GHz processors and 4 GB

of RAM. The adjoint model utilizes multiple processors on shared memory architectures
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as efficiently as the forward model. It requires 16KB of checkpoint storage space per

simulated day per grid cell; this amounts to 11 GB of storage space per week with the

current model configuration. This is comparable to the storage requirements of other

adjoint models of CTMs such as STEM, 40KB per day per cell (Sandu et al., 2005a), or

the CIT model, 100 KB per day per cell (Martien et al., 2006), taking into account that the

time step is 30 min in GEOS-Chem (for this study), 15 min for STEM, and 3 min for the

CIT model. The computational cost of the adjoint model (backward only) of GEOS-Chem

is 1.5 times that of the forward model, requiring 2.5 h for a week long iteration (forward and

backward). Adjoint models of other CTMs report this ratio as: STEM: 1.5, CHIMERE:

3–4, IMAGES: 4, Polair: 4.5–7, CIT: 11.75. We see that the adjoint of GEOS-Chem is

quite efficient; in general, adjoint codes that are derived by hand or use specialized tools

such as KPP are most efficient. Such efficiency is the trade-off for the labor involved in

manually constructing an adjoint model of this size and complexity.

3.4 Sensitivity analysis

In this section we demonstrate how the adjoint model can be used as an efficient method of

investigating the sensitivity of modeled aerosol concentrations to their precursor emissions.

Sensitivity calculations for the full model are performed for a week-long simulation. Fig-

ure 3.9 shows the sensitivity of global burdens of sulfate, nitrate and ammonium aerosol to

surface level emissions of anthropogenic SOx, NOx and NH3. The cost function is evaluated

once daily. Other results retrieved from the same calculations (not shown) are sensitivities

of these species with respect to the following emissions: stack SOx, stack NOx, biofuel SO2,

biomass burning SO2, ship SO2, biofuel NH3, biomass burning NH3, and natural NH3.

The sensitivities in Fig. 3.9 encompass a wide range of relationships between aerosols

and their primary precursors. Some of these relationships are practically intuitive, such as

the sensitivities of sulfate to SOx emissions or of nitrate to NOx emissions, both of which

are generally large and positive. The sensitivity of ammonium to emission of NH3 is also
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positive, and the sensitivities of ammonium to SOx and NOx emissions are always positive,

owing to uptake of NH3 on inorganic aerosol by sulfate and nitrate.

Some of the relationships in Fig. 3.9 are less obvious, such as the negative sensitivity

of sulfate to emissions of NH3. This effect is smaller in magnitude than some of the

others, because the relationship between NH3 emissions and sulfate aerosol concentrations

is less direct. As total sulfate is conserved in the MARS-A aerosol equilibrium model, this

effect is not due to thermodynamic interactions between ammonium and sulfate. The only

species directly affected by NH3 or ammonium concentrations are nitrate and nitric acid,

via thermodynamic interactions. Therefore, the relationship between NH3 and sulfate is

dictated by the interactions between sulfate and nitrate, and, hence, NOx. The sensitivity

of nitrate to SOx is largely negative, owing to thermodynamic competition between nitrate

and sulfate for ammonium. The sensitivity of nitrate to NH3 is entirely positive, due to

the necessary presence of excess NH3 for HNO3 to condense. The combination of these two

effects explains the overall negative relationship between sulfate and emissions of NH3.

Within the global trends noted above, there is also much discernible local variability.

For example, there are a few locations where the sensitivity of sulfate to NH3 emissions

changes abruptly from predominantly negative to locally positive. Some of these actually

correspond to similarly abrupt shifts between areas that are sulfate-poor to areas that

are sulfate-rich, such as the tip of South America and immediately west of the Iberian

Peninsula. In other conditions or times of the day, emission of NOx can actually lead to a

decrease in nitric acid, and, hence, nitrate.

While the adjoint model accounts for nonlinearities in the relationships between emis-

sions and aerosols, the results of the adjoint calculation are still merely tangent linear

derivatives (gradients) which are likely to be valid over only a limited range of values for

the parameters (emissions). We explore the robustness of the aerosol sensitivity calcula-

tions with respect to the magnitude of the emissions. Figure 3.10 shows the sensitivity

of nitrate with respect to NOx emissions calculated when the emissions are multiplied by
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uniform scaling factors of 0.75 and 1.25; the relative differences between these values and

base case sensitivities shown in Fig. 3.9. The sensitivities can differ substantially on a point

to point basis (>50%), particularly near boundaries between the positive and negative sen-

sitivities or in areas where the sensitivities are very small. The differences are generally

much less (<20%) in areas with the largest sensitivities such as Europe, Eastern Asia and

the Eastern United States. Despite these relative differences, the sensitivity field, viewed

on the global (log) scale, remains nearly identical to the base case values. While individual

sensitivities may be valid only over a limited range, the sensitivity field as a whole appears

fairly robust.

Overall, the adjoint model is a promising tool for examining the dependence of aerosol

concentrations on emissions. We note that the time required to calculate all of these

sensitivities was less than 10 times the cost of a single forward model evaluation, while

obtaining these results using the finite difference method would have required >5000 times

the cost of a forward run.

3.5 Inverse modeling tests

Several inverse modeling tests are performed to assess the capabilities of the adjoint model

in a data assimilation application. Using the twin experiment framework, pseudo observa-

tions, cobs, are generated with the forward model using a base set of emissions parameters,

p=pa. An active subset of the parameters used to generate these observations is then per-

turbed using scaling factors, σ=p/pa, each of which is allowed to vary independently in

every grid cell for each emitted species. The inverse model uses the pseudo-observations

to recover the original unperturbed values of these active parameters.

We begin by generating a week-long set of observational data using the forward model

with all scaling factors set equal to unity. For these initial tests, we perturb one set of

emissions by re-scaling the emissions in every cell by a factor of two, and we use observations

in every grid cell once every 24 h to force the data assimilation. As there is no error in these
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observations, equal weight is ascribed to each (S−1
obs is the identity matrix), and the error

covariance of our initial (perturbed) estimate of the emissions scaling factors is infinite

(S−1
p is zero). Such conditions are unrealistic and serve only to test the adjoint model

under the most ideal conditions possible.

In the first set of tests (DA1), we perturb the emission inventories of (a) surface level

anthropogenic SOx, (b) biomass burning SO2 and (c) biofuel SO2. We assimilate obser-

vations of sulfate for the week of 1–7 July 2001. Figure 3.11 shows the progression of the

normalized (divided by the initial value) cost function at iteration i during the optimization

procedure, Ji/J1. The cost function quickly reduces by at least five orders of magnitude

in each case. The correct emissions inventories are essentially entirely recovered.

In the next test (DA2), we perturb the emission inventory of NH3 from anthropogenic

sources, and assimilate observations of aerosol ammonium. This is a slightly more dif-

ficult inversion as ammonium measurements alone do not fully constrain NH3 emissions

(Gilliland et al., 2006). As demonstrated in Sect. 3.3.5, ammonium is indirectly, yet appre-

ciably, coupled to gas-phase oxidants. Utilizing observations of Ox (O3, NO2 and NO3) in

conjunction with ammonium observations noticeably increases the convergence rate over

using either type of observations alone, see Fig. 3.12. This demonstrates, albeit in a highly

idealized fashion, the potential for exploiting multi-phase measurements as constraints for

aerosol modeling.

The final test (DA3) attempts to mimic a slightly more realistic scenario than the previ-

ous tests: improving estimates of global anthropogenic SOx and NOx emission inventories

using surface measurements of sulfate, nitrate, and ammonium aerosol. In this case, the

emissions inventories are perturbed regionally by 5–30% with an additional random factor

of order 5%. For example, the anthropogenic SOx and NOx emissions in North America

are perturbed by factors of 0.8+r and 0.85+r, respectively, while emissions in Asia are per-

turbed by factors of 1.2+r and 1.3+r, where r is a random number uniformly distributed

between 0 and 0.05. The error covariance matrix Sp is calculated using an ascribed error
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of 100% and is assumed to be diagonal. Observations are used once per day in only half of

the land-based surface grid cells. The reduction of the cost function after 15 iterations is

shown in Fig. 3.13. The difference between the true emission inventories for SOx and NOx

and the estimated inventory at the first and final iterations are shown in Fig. 3.14. While

there are substantial improvements in the SOx emissions and the NOx emissions in Europe

and Asia, the NOx emissions in North America have yet to converge. Although the cost

function has reduced by nearly two orders of magnitude, the optimization procedure has

clearly yet to reach a minimum. In applications of this type, the procedure is often halted

according to an appropriate convergence criteria. Further iterations might be justified;

however, care must be taken to avoid overly minimizing the predictive error component of

the cost function at the sake of generating noisy solutions.

3.6 Summary and conclusions

The derivation of the adjoint model of GEOS-Chem has been presented in a piecewise

fashion. We have implemented the first adjoint of an aerosol equilibrium thermodynamic

model (MARS-A, Binkowski and Roselle, 2003), derived using the automatic differentia-

tion tool TAMC (Giering and Kaminski , 1998), which required significant manual pre- and

post-processing owing to the structure and complexity of the code. To facilitate construc-

tion of the adjoint of the GEOS-Chem gas-phase chemical mechanism, we implemented a

Rosenbrock solver using the KPP numerical library (Sandu et al., 2003). This has allowed

for automatic generation of the adjoint of the chemical mechanism and also improved for-

ward model performance (see Appendix A). The adjoints of wet removal, deep convection,

and turbulent mixing were derived manually and with the aid of TAMC. We have used

the continuous adjoint method to treat advection, wherein the same numerical algorithm

is used to solve the continuous adjoint advection equation as was used for tracer advection

in the forward model.

All aspects of the adjoint model have been tested both separately and together by
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comparing the adjoint gradients to finite difference gradients. Each individual discrete ad-

joint routine showed satisfactory performance over a wide range of conditions. The adjoint

gradients of the cost function evaluated using the full model are well correlated with the nu-

merical gradients, as measured using finite difference calculations, with most R2>0.95. The

hybrid approach adopted here avoids physically unrealistic noise associated with discrete

adjoints of nonlinear and discontinuous advection schemes and does not entirely preclude

validation of the adjoint model as a whole via comparison to finite difference gradients.

Such comparisons are understandably unrevealing when considering sparse or infrequent

data; however, in both ideal test calculations with smooth adjoint forcings and realistic

tests of week-long sensitivities of predictions of actual aerosol observations, the compar-

isons are consistent enough to ensure proper derivation of the adjoint. Nevertheless, this

treatment necessitated additional inspection of model performance on a component-wise

basis. While these benchmarks set the standard for further use and development of this

adjoint model, future applications may require additional testing.

The adjoint model clearly demonstrates the importance and relative strengths of many

complex nonlinear relationships connecting concentrations of aerosol species and their pre-

cursor emissions. Though indirect, relationships such as the dependence of sulfate aerosol

concentrations on emission of NH3 or NOx are captured by the adjoint model, and can

be determined globally in an efficient manner. The sign and magnitude of many of these

sensitivities exhibit a rich array of features owing to the influence of environmental factors,

such as the sulfate to ammonium ratio, cloud processing of SO2, and variability in the NOx

and Ox levels.

We have also demonstrated the capabilities of the adjoint model in mock data assim-

ilation applications. An adjoint model of this type allows for the possibility of exploiting

multi-phase observations to constrain emissions of aerosol precursors. Here we have fo-

cused on regional variability of the emissions inventories, though the emissions can also

be adjusted on a temporal basis. For real data assimilation projects, many application
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specific issues inherent in this type of inverse modeling have yet to be resolved, such as

specification of the error covariance matrices Sobs and Sp. The dependance of adjoint model

performance is known to depend strongly on such factors (Chai et al., 2006), proper formu-

lation of which is necessary to ensure scaling of the inventories that are physically realistic

(Stavrakou and Muller , 2006). Real world application will also likely require conditioning

of the cost function to improve convergence rate (Meirink et al., 2005) and tuning of the

regularization parameter (Hakami et al., 2005).

Subsequent studies will focus on expanding the adjoint model to capture feedbacks

such as the effect of sulfate aerosol concentrations on photolysis rates and heterogeneous

reaction probabilities, seen here to occasionally be quite important. Work on the adjoint

of the aerosol equilibrium model ISORROPIA (Nenes et al., 1998) is also in progress.

Further application of the GEOS-Chem model will focus also on the exploitation of multi-

phase measurements from sources such as surface stations, aircraft, and satellites as model

constraints. The adjoint of GEOS-Chem has already been used to constrain emissions

of carbon monoxide from Asia using satellite (MOPITT) measurements (Kopacz et al.,

20072), demonstrating the potential for addressing a wide range of scientific questions with

this type of inverse model.

Appendix 3.A Implementation of a Rosenbrock solver and

comparison to SMVGEARII

Solving large systems of chemical rate equations in CTMs requires the use of special nu-

merical tools, or solvers, that are specifically designed for this purpose. Taking the adjoint

of such solvers manually, or using generic automatic differentiation tools, can be an onerous

task. We desire to create the adjoint of the full chemical mechanism in GEOS-Chem using

the KPP software library (Sandu et al., 2003), which is a set of tools specifically built

for automatic differentiation of chemical mechanisms and the numerical algorithms used
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to solve these systems. In order to make use of these tools, we must first implement the

KPP generated numerical integration routines in the forward model. We investigate the

feasibility and ramifications of replacing the current solver in GEOS-Chem, SMVGEARII

(Jacobson, 1995), with a KPP generated Rosenbrock solver. We consider the amount of

work required to make such a switch, the efficiency of the Rosenbrock solver compared

to the SMVGEARII solver, and the overall effect that such a switch has on the model

predictions after a week-long simulation.

After manually translating the SMVGEARII mechanism input files to KPP input files,

the KPP tools easily generate a set of Fortran code that solves the given system for a

variety of supported Rosenbrock type integrators in a box model setting. Minimal manual

adjustment to this code was required to interface with the 3-D GEOS-Chem model and

to allow support for OpenMP parallelization. Some amount of modifications to the KPP

code itself will be required to fully automate this process.

Next we consider the efficiency of the Rosenbrock solver and the SMVGEARII solver

in a global simulation with only chemistry. For each species, in every cell, we compare the

concentrations from benchmark solutions at the end of a day-long simulation to concen-

trations from a reference solution for each solver. The benchmark calculations span a set

of tolerance levels {10−1≤RTOL≤10−5, 106 molecules cm−3≥ATOL≥10−2

molecules cm−3} while the reference solutions were computed using tight tolerances (RTOL

= 10−8, ATOL=102 molecules cm−3). RTOL and ATOL are the relative and absolute error

tolerance levels, respectively. Looser tolerance levels result in repeated failure to converge

in numerous grid cells.

To assess the accuracy of the two methods, following Sandu et al. (1997) we define the

significant digits of accuracy (SDA) as

SDA = − log10(maxkERk)

where ERk is a spatially modified root mean square norm of the relative error of the
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benchmark solution (ĉk,j) with respect to a reference solution (ck,j) for species k in grid

cell j,

ERk =

√√√√ 1
|θk|

·
∑
j∈θk

∣∣∣∣ck,j − ĉk,j

ck,j

∣∣∣∣2
For Θ total grid cells, θk is the set of all locations of significant concentrations of species k,

{0≤θ≤Θ : ck,j≥a}. A threshold value of a=106 molecules cm−3 is chosen to avoid inclusion

of errors from locations where concentrations of a given species are less than chemically

meaningful values.

We present the results in the form of a work – precision diagram, wherein the value

of SDA for each test is plotted versus the average computational expense for the solver

to integrate the chemical mechanism for one hour. When calculating this average, we

do not consider the time required during the initial six hours of the simulation, as each

solver requires a bit of “spin up” time in order to adjust internal time steps to values

more appropriate than the default starting step size according to the stiffness of the local

system. Such spin up time is negligible with respect to the total computational cost of any

simulation longer than a few days.

Figure A1 shows the work-precision diagram for the global benchmark simulations. The

Rosenbrock solver is nearly twice as efficient as the SMVGEARII solver during these tests.

Based on this analysis, we choose to run the Rosenbrock solver at tolerance levels that

yield an SDA of ∼1.0 as the standard setting for this work.

For practical applications, we are interested in the difference in the total model pre-

dictions, including all model processes, incurred by switching to the Rosenbrock solver.

We compare the daily average concentrations after a week-long simulation, including all

model processes, calculated using the new standard Rosenbrock settings versus the stan-

dard SMVGEARII settings. Figure A2 shows the values of ERk for each species k using the

Rosenbrock solver to generate the test solution and SMVGEARII for the reference solution.

This figure shows that after switching to this Rosenbrock solver, the solution is changed by
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less than 10% for most species. The difference is larger, between 10 and 15%, for HNO2,

HNO4, IAP, INO2, ISOP, N2O5, NO, NO2, PP, and RIP (for full definition of species, see

http://www.env.leeds.ac.uk/∼mat/GEOS-CHEM/GEOS-CHEM Chemistry.htm). Deter-

mining whether or not this is an actual improvement in the accuracy of the forward model

itself would require further comparison to observations. At the very least, the switch results

in an improvement in the numerical solution of the forward model equations for slightly

less computational cost.

Overall, while a more detailed analysis (requiring optimization of specific species toler-

ance levels and the parameters that control internal step size expansion and contraction) is

necessary to determine unequivocally which method is more efficient, in our experience, not

only is the Rosenbrock method desirable because of its differentiability, but it also appears

to improve forward model performance by providing more accurate solutions to the model’s

chemical mechanism than the SMVGEARII solver for less computational expense. We have

reported only the results using the Rodas-3 set of Rosenbrock coefficients; however, ad-

ditional tests were performed using the other available sets (Ros-2,Ros-3,Ros-4,Rodas-4),

and the trends were similar. It must also be emphasized that these comparisons should

not be generalized to other platforms or CTMs; the SMVGEARII algorithm is designed

to perform most efficiently on vector platforms by re-ordering the grid cells every external

chemistry time step, an operation which serves only to increase the cost of this method by

∼5% on non-vector machines such as those used in this study, and most other GEOS-Chem

studies.

Appendix 3.B Discrete adjoint derivatives with respect to

reaction rate constants

We desire to calculate the gradient of the cost function with respect to NOx emissions. In

GEOS-Chem, the emission and dry deposition of many species, such as NOx, are incorpo-
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rated into reactions in the tropospheric chemical mechanism as,

dcNO

dt
= ENOx + . . . (B-30)

where ENOx is the NOx emission rate, emitted as NO. The strong influence of NOx on the

overall chemistry precludes using the continuous adjoint equation of the above equation,

λENOx =
∫

λNOdt (B-31)

Hence, we must calculate the sensitivity of the discrete chemical solver itself with respect

to the reaction rate coefficients. We present a derivation of these equations here, as they

have not yet been presented elsewhere, and they are necessary for accurate calculation of

the desired adjoint sensitivities.

For completeness, we first present the equations for the Rosenbrock method, which

advances the forward model solution (cn) from one step to the next using the following

formulas,

cn+1 = cn +
s∑

i=1

miki, Errn+1 =
s∑

i=1

eiki (B-32)

Ti = tn + αih, Ci = cn +
i−1∑
j=1

aijkj (B-33)

A =
[

1
hγ

− JT (tn, cn)
]

(B-34)

A · ki = f(Ti, Ci) +
i−1∑
j=1

bij

h
kj + hγift(tn, cn) (B-35)

where s is the number of stages, αi=
∑

j αij , γj=
∑

j γij ,mi, αij , ai,j , bij , γij , and ei are

method coefficients, f(·, ·) is the ODE derivative function: c′=f(t, c), ft(·, ·) is the partial

time derivative: ft(t, c)=∂f(t, c)/∂t, J(·, ·) is the Jacobian: J(t, c)=∂f(t, c)/∂c, Jt(·, ·) is

the partial time derivative of the Jacobian: Jt(t, c)=∂J(t, c)/∂t, and H(·, ·) is the Hessian:
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H(t, c)=∂2f(t, c)/∂c2. A is the system matrix, and Ci, Ti, ki are internal stage quantities

defined by the method. The J and γ used here are not likely to be confused with the

use of these notations in the cost function definitions, and allow us to maintain consistent

notation with the KPP documentation, which should be consulted for further explanations

and values of the method coefficients.

The equation for the adjoint of the concentrations, λc, is obtained by differentiating

the method with respect to cn, see Eq. (3.11).

A · ui = miλ
n+1
c +

s∑
j=i+1

(
ajivj +

bji

h
uj

)
(B-36)

vi = JT (Ti, Yi) · ui, i = s, s− 1, · · · , 1 (B-37)

λn
c = λn+1

c +
s∑

i=1

(H(tn, cn)× ki)T · ui (B-38)

+ hJT
t (tn, cn) ·

s∑
i=1

γiui +
s∑

i=1

vi

where vi and ui are internal stage vectors defined by the method. For GEOS-Chem, the

reaction rates are constant over the internal time steps, hence we use the reduced form of

this equation for autonomous systems,

λn
c = λn+1

c +
s∑

i=1

(H(tn, cn)× ki)T · ui (B-39)

+
s∑

i=1

JT (Ti, Ci) · ui.

Taking the derivative of the Rosenbrock method with respect to the reaction rate parame-

ters, and applying Eq. (3.14), gives the following equation, again for autonomous systems,

λn
p = λn+1

p +
s∑

i=1

(Jp(tn, cn)× ki)T · ui (B-40)
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+
s∑

i=1

fT
p (Ti, Ci) · ui.

Though Eq. (B-40) is not implemented in the KPP generated adjoint code, KPP does

generate the necessary routines for calculation of fp (dFun dRcoeff ) and (Jp(tn, cn)×ki)T

(dJac dRcoeff ). For emissions, the function derivative is simply the identity matrix, and

the Jacobian derivative is zero as the emission ODE is independent of any other species

concentrations, so the discrete adjoint of the emission rates is

λn
E = λn+1

E +
s∑

i=1

I · ui. (B-41)
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Figure 3.1: Thermodynamic adjoint validation. In the left column are the adjoint sen-
sitivities of nitrate aerosol mass at the surface with respect to anthropogenic NH3 and
SOx emissions scaling factors. In the right column are the adjoint gradients compared to
finite difference gradients. The cost function is evaluated once at the end of a week-long
simulation that includes only aerosol thermodynamics and emissions of SOx and NH3.
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Figure 3.3: Chemistry adjoint validation. In the left column are the adjoint sensitivities
of sulfate (SO4), methacrolein (MACR), and acetone (ACET) at the surface with respect
to surface level anthropogenic NOx emissions scaling factors. In the right column are the
adjoint gradients compared to finite difference gradients. The cost function is evaluated
once at the end of a week-long simulation with only chemistry and emissions×0.1.



94

(a) Continuous adjoint sensitivities (b) Finite difference sensitivities, 

(c) Finite difference sensitivities, (d) Finite difference sensitivities, 

Figure 3.4: Sensitivities of aerosol concentrations with respect to concentrations in adja-
cent cells 6 h earlier considering only E/W advection. Sensitivities are calculated using:
(a) continuous adjoint equation and (b)–(d) one-sided finite difference method with per-
turbations of δσ. The finite difference sensitivities contain more extreme values, including
physically meaningless negative sensitivities that become more prevalent as δσ → 0.
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Figure 3.5: Select points for accuracy tests. Black locations used for anthropogenic emis-
sions of SOx and NOx, grey points for NH3, with one overlapping pair in Europe.
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Figure 3.6: Full model performance. Comparison of sensitivities of global aerosol bur-
dens (kg) to anthropogenic precursor emissions scaling factors calculated using the adjoint
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Figure 3.7: Effects of advection. Comparison of sensitivities of sulfate burdens to NOx emis-
sions scaling factors calculated using the adjoint method vs. the finite difference method.
The base case (center left panel of Fig. 3.6) employs the standard PPM advection scheme,
and the cost function is evaluated globally once at the end of a 24 h simulation. These
cases differ from the base case in the following manner: (a) advection is turned off; (b)
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Figure 3.12: Cost function reduction for tests DA2. A uniform perturbation is applied to
emission inventories of anthropogenic NH3. Complete daily measurements of (red-crosses)
ammonium aerosol and (blue-diamonds) ammonium aerosol and gas-phase Ox are utilized
for the data assimilation during a week-long simulation.



103

2 4 6 8 10 12 14

10−1

100

Iteration, i

J i/J
1

Figure 3.13: Cost function reduction for tests DA3. Emissions inventories of anthropogenic
SOx and NOx emissions are perturbed regionally and optimized simultaneously utilizing
sparse daily measurements of aerosol sulfate, ammonium, and nitrate during a week-long
simulation.



104

-1.7x1011 -4.3x1010 7.8x1010 2.0x1011

-2.3x103 -5.7x103 1.2x104 2.9x104

ESOx(i=1) - ESOx(true) ESOx(i=15) - ESOx(true)

ENOx(i=1) - ENOx(true) ENOx(i=15) - ENOx(true)

[molecule / (cm2 s)]

[kg / (grid cell hour)]

Figure 3.14: Emissions inventory estimates for test DA3. Difference between the estimated
emission inventory at iteration i and the “true” inventory, which was used to generate the
pseudo-observations. Results are shown for the initial estimate (left column) and after 15
iterations (right column).



105

100 101 102
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time, s

S
D

A

Rosenbrock
SMVGEARII

Fig. A1. Work-precision diagram for the Rosenbrock (blue circles), and SMVGEARII
(red crosses) chemical solvers. Each solver is implemented in the 3-D model and run for
one day using a 1 h external chemical time step. Plot shows the average time taken per
external chemical time step versus the significant digits of accuracy (SDA) achieved. Tests
performed using dual 1.5 GHz Itanium processors.



106

10 20 30 40 50 60 70 80
10−3

10−2

10−1

100

Species index, k

E
R

k

Fig. A2. Difference between the new standard GEOS-Chem simulation using the Rosen-
brock solver with respect to the original GEOS-Chem solution using SMVGEARII after a
week-long run. The effect of switching solvers is a ∼5–10% change in species concentrations.
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Chapter 4

Source Evaluation of Secondary
Inorganic Aerosol in the United
States with the Adjoint of
GEOS-Chem

4.1 Introduction

The persistence of airborne fine particulate matter (PM) in heavily populated areas poses a

significant health hazard (Pope, 2000; Pope et al., 2002; WHO , 2003). In the United States

alone, it is currently estimated that 90 million people live in areas where yearly average PM

concentrations exceed the National Ambient Air Quality Standards (NAAQS) (EPA, 2002,

2004). On average, about half of the mass of such aerosol is composed of the inorganic

species sulfate (SO2−
4 ), nitrate (NO−

3 ) and ammonium (NH+
4 ). Devising effective mitiga-

tion strategies for PM control requires a quantitative relationship between elevated aerosol

concentrations and emissions from specific source sectors. Determining which sources to

target for regulatory control is difficult, as most of this aerosol is not directly emitted;

rather, it is formed in the atmosphere from gas-phase precursors via chemical and thermo-

dynamic transformations. Precise source attribution is further complicated by transport

processes that distribute these aerosols up to several thousands of kilometers from their
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point of origin. Hence, formation of regulatory measures for control of PM entails having

both the ability to estimate aerosol distributions and also a means of extracting source

attributions from such predictions (Marmur et al., 2006).

Chemical transport models are invaluable for estimating distributions of aerosol species

given a set of input parameters (emissions, initial condition, etc.) and meteorological condi-

tions, but they often suffer from substantial uncertainty in these parameters. Using inverse

modeling techniques, observations can be used to improve model predictions by providing

important constraints on estimates of model parameters. For example, a Kalman filter

approach was used to estimate improved monthly emissions scaling factors for ammonia

(NH3) emissions over the United States using observations of ammonium wet deposition in

works by Gilliland and Abbitt (2001) and Gilliland et al. (2003, 2006). Mendoza-Dominguez

and Russell (2000, 2001) optimized domain-wide emissions scaling factors for eight species

over the eastern United States using observations of gas-phase inorganic and organic species

and speciated fine particles. These works provide valuable constraints on total emissions

budgets. However, the inverse modeling approach used in such studies requires aggregation

of emissions into large (continental scale) domains and physical approximations (neglecting

transport) that may bias results or obscure important sub-domain variability.

This work presents the adjoint of a global chemical transport model (GEOS-Chem)

as a tool for evaluating sources of secondary inorganic aerosol over the United States.

Previous simulations over the same domain have indicated that the most difficult aspect

of such predictions is estimating concentrations of NO−
3 ; hence, we choose to analyze

the month of January as nitrate concentrations are typically largest in the winter. The

adjoint method is an efficient means of calculating model sensitivities with respect to

numerous model parameters, affording optimization of these parameters on a resolution

commensurate with that of the forward model itself. Sulfate and nitrate aerosol levels

from surface measurements are used to constrain estimates of model control parameters

by minimizing the error weighted squared difference between predictions and observations
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while ensuring reasonable proximity to the prior parameter estimate. Use of a global model

has the benefit of explicitly tracking transboundary influences to their sources from around

the globe.

Returning to the question of aerosol source attribution, the adjoint model can be used

for attainment studies (Hakami et al., 2006), wherein the importance of emissions from

various sectors and locations can be ranked according to their influence on aerosol concen-

tration that are in violation of an air quality standard.

4.2 Forward model

The GEOS-Chem chemical transport model is used to estimate ambient concentrations

of aerosol over the United States for the month of January, 2002. This model is driven

using assimilated meteorology from the Goddard Earth Observing System (GEOS-3) of the

NASA Global Modeling and Assimilation Office (GMAO). GEOS-3 data sets are down-

sampled to a resolution of 4◦×5◦ to facilitate detailed simulation of tropospheric gas-phase

chemistry, discussed fully in works such as Bey et al. (2001), Li et al. (2001) and Martin

et al. (2002). The present study uses model version 6-02-05, which includes an online

secondary inorganic aerosol simulation developed and described in full by Park et al. (2004);

here we reiterate key features.

Fine mode inorganic aerosol is calculated as the mass of aerosol-phase SO2−
4 , NH+

4 and

NO−
3 that forms from gas-phase precursors sulfuric acid (H2SO4), NH3, and nitric acid

(HNO3), as follows. H2SO4 is formed from oxidation of SO2 by OH in the gas-phase,

and, more importantly, by H2O2 and O3 in clouds. As H2SO4 readily partitions into

the particle phase, it is always tracked as aerosol sulfate. Thermodynamic equilibrium of

aerosol NH+
4 and NO−

3 with their gas-phase counterparts (NH3 and HNO3) is calculated

using the MARS-A routine of Binkowski and Roselle (2003), which essentially allows for

formation of (NH4)2SO4 and, if excess NH3 is available, NH4NO3, though formation of

aerosol NO−
3 can be enhanced by cold or moist conditions. Additional important couplings
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between gas and aerosol-phases treated in the model include formation of HNO3 through

heterogeneous reaction of N2O5 with water, where the the reaction probability is calculated

as a function of aerosol type, available surface area, temperature, and relative humidity

(Evans and Jacob, 2005).

Anthropogenic emissions of NOx and SO2 are taken from the Global Emission Inventory

Activity (GEIA) database for the year 1985 (Benkovitz et al., 1996), scaled according to

fossil fuel usage for the year 1998 (Bey et al., 2001). NH3 emissions from anthropogenic

(domesticated animals, fertilizers, human bodies, industry, fossil fuels) and natural (oceans,

crops, soils, wild animals) sources are based on data from the 1990 GEIA inventory of

Bouwman et al. (1997), with additional contributions owing to biomass burning and biofuel

use from inventories by Duncan et al. (2003) and Yevich and Logan (2003). The total yearly

source of NH3 in the United States is scaled to match that of Gilliland et al. (2003), while

monthly variability is calculated according to an exponential temperature scaling (Adams

et al., 1999). This leads to a seasonal cycle in the NH3 emissions that is similar to, but

slightly out-of-phase from, that obtained in the work by Gilliland et al. (2003), wherein

seasonality was inferred from inverse modeling of NH+
4 .

4.3 Adjoint modeling

The GEOS-Chem model can be viewed as a numerical operator, F , acting on a vector, c,

cn+1 = F (cn), (4.1)

where c is the vector of all K tracer concentrations, cn=[cn
1 , . . ., cn

k , . . ., cn
K ]T at time step n.

In practice, F comprises many individual operators representing various physical processes.

For the moment we will simply let F represent a portion of the discrete forward model

that advances the model vector from time step n to step n+1.

The adjoint of GEOS-Chem (Henze et al., 2007) is used to calculate the sensitivity of a
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scalar model response function, J , with respect to the model parameters, p. The response

function may depend upon a specific subset of concentrations, Ω,

J =
∑

k,n∈Ω

J n(cn
k).

For the following derivation we will assume that the domain Ω includes all species at all

times, while in practice the definition of Ω and the form of J n will be application-specific.

As will become evident, it is first necessary to calculate the sensitivity of the model

response with respect to the vector of species concentrations at every time step in the

model,

∇cnJ =
∂J
∂cn

. (4.2)

We can write the local Jacobian around any given time step as

∂cn+1

∂cn
=

∂F (cn)
∂cn

= Fn
c . (4.3)

Using the chain rule, the right hand side of Eq. (4.2) is expanded,

∇cnJ = (Fn
c )T (Fn+1

c )T· · · (FN−1
c )T ∂JN

∂cN

+ (Fn
c )T (Fn+1

c )T· · · (FN−2
c )T ∂JN−1

∂cN−1
+ · · ·

+
∂J n

∂cn
.

(4.4)

For the adjoint calculation, we define the adjoint variables λn
c = ∇cnJ and λp = ∇pJ ,

where the subscripts c and p indicate sensitivity with respect to c and p, respectively.

Initializing

λN
c =

∂JN

∂cN
,
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adjoint sensitivities are found by solving the following equations iteratively from n=N, . . ., 1,

λn−1
c = (Fn

c )T λn
c +

∂J n−1

∂cn−1
, (4.5)

λp = (Fn
p )T λn

c +
∂J n−1

∂cn−1
+ λp, (4.6)

where

Fn
p =

∂Fn

∂p
. (4.7)

The terms ∂J n

∂cn are referred to as the adjoint forcings. While calculation of adjoint values

using this algorithm is straightforward, there are a few subtleties worth mentioning. First,

evaluating sensitivities with respect to model parameters requires having first calculated

sensitivities with respect to concentrations. An adjoint model used for analysis of param-

eters can also, by default, be used to analyze initial conditions. Secondly, while solving

Eq. (4.5) iteratively along with Eq. (4.6) is not necessary, it is computationally preferable

as values of λn
c need not be stored for more than a single step. Finally, it is not necessarily

recommended to always derive the adjoint model directly from the numerical operator, as

opposed to starting from the continuous forward model governing equations (Sirkes and

Tziperman, 1997; Giles and Pierce, 2000; Vukicevic et al., 2001). A full description of

the derivation and validation of the adjoint model of GEOS-Chem is given in Henze et al.

(2007).

4.4 Inverse modeling

In a Bayesian sense, inverse modeling is the process by which measurements are used to

reduce the set of all possible models by rejecting those that do not likely represent the

observations while also being consistent with prior information (Tarantola, 2006). A range
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of models is typically constructed using control parameters,

σ = [σ1, σ2, . . . , σM ]T ,

which are used to adjust elements of the model parameters, p, when applied as exponential

scaling factors,

p = pae
σ,

where pa is the prior parameter estimate. The inverse problem seeks σ that minimizes the

cost function, J , given by

J =
1
2

∑
c∈Ω

(Hc− cobs)TS−1
obs(Hc− cobs) +

1
2
γr(σ − σa)TS−1

σ (σ − σa), (4.8)

where c is the vector of species concentrations mapped to the observation space by H, cobs

is the vector of species observations, Sobs is the observation error covariance matrix, σa is

the prior estimate of the parameter scaling factors (equal to 0), Sσ is the error covariance

estimate of the parameter scaling factors, γr is a regularization parameter, and Ω is the

domain (in time and space) over which observations and model predictions are available.

This form of a cost function is rigorously optimal from the perspective of Bayesian analysis

if the operators F and H are linear and the distributions of cobs and pa are Gaussian. For

our purposes, we adopt this form for J in an ad hoc fashion, as the operators are nonlinear,

and introduce γr to compensate for lack of precise statistical knowledge of the distributions

of cobs and pa.

The adjoint model is used to calculate the gradient of the cost function with respect to

the parameter scaling factors, ∇σJ . Using the variational approach, these gradients are

supplied to an optimization routine (the quasi-Newton L-BFGS-B optimization routine

(Byrd et al., 1995; Zhu et al., 1994)) and the minimum of the cost function is sought

iteratively. At each iteration, improved estimates of the model parameters are implemented
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and the forward model solution is recalculated.

4.4.1 Measurements

We compare predictions of sulfate and nitrate aerosol levels to observations from the Inter-

agency Monitoring of Protected Visual Environments (IMPROVE) network (Malm et al.,

1994) during the month of January, 2002. Mass concentrations of sulfate and nitrate are

determined from analysis of fine aerosol (aerodynamic diameter less than 2.5 µm) collected

on teflon and nylon filters, respectively, sampled over a 24 h period every third day. Fig-

ure 4.1 compares the predicted and observed monthly average aerosol sulfate and nitrate,

where the observations from individual IMPROVE sites have been averaged to lie on the

GEOS-Chem model grid. While estimates of sulfate concentrations are reasonable, the ni-

trate simulation shows significant discrepancy with observations, similar to previous studies

(Park et al., 2004, 2006; Liao et al., 2007). Comparisons for nitrate aerosol are potentially

biased, particularly in the southwestern United States, where a portion of measured nitrate

may come from uptake on dust particles, which is a source of nitrate aerosol not considered

in the model.

The observation error covariance, Sobs, includes contributions from instrumental and

representational sources of error. Instrument error is generally small, within a few percent.

The representational error, on the other hand, is likely significant owing to the low reso-

lution of the model. To estimate the magnitude of such error, two model simulations are

performed, one at the base case of 4◦ × 5◦ resolution and one at 2◦ × 2.5◦ resolution, each

with the same initial conditions and emissions inventories. Samples of the estimated daily

average nitrate aerosol concentrations at the surface are shown in Fig. 4.2. The difference

between the aerosol concentration in a given grid cell from the coarse simulation, panel

(a), and the average concentration over the same 4◦ × 5◦ domain from the fine simulation,

panel (b), is used to estimate the representational error, shown in panel (c). Although still

only a crude approximation of the representational error, it is likely better than assuming
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a single value for all observations, as representational errors depend upon the variability

in the aerosol distribution. For example, consider the two grid cells at 38◦ N where con-

centrations of nitrate peak (yellow) in the coarse simulation. The cell on the right actually

encompasses a region of considerable variability, at least as estimated by the 2◦×2.5◦ model

calculation, hence the representational error assigned to observations in this location are

substantial (43%) for this day. In contrast, the cell on the left encompasses a much more

consistent distribution, hence the representational error there is smaller (23%).

4.4.2 Model parameters

The set of variable parameters includes scaling factors for emissions of SOx, NOx and NH3

from several specific sectors listed in Table 4.1. Also considered are scaling factors for the

initial concentrations of each tracer (initial conditions) and for several kinetic parameters,

such as the heterogeneous reaction probability for formation of HNO3 from N2O5, which

is an important (Dentener and Crutzen, 1993), yet still highly uncertain (Brown et al.,

2006), mechanism for loss of NOx.

After a single evaluation of ∇pJ using the adjoint model, it is clear which variable

parameters are the most influential. Figure 4.3 shows the sensitivity of the cost function

with respect to anthropogenic emissions of SOx, NOx and NH3, and natural emissions of

NH3. These sectors have the largest sensitivities of all those considered. It is worth noting

that the sensitivities are not necessarily largest where sources or prediction error is largest.

Sensitivities with respect to sources outside North America are generally several orders

of magnitude smaller than those shown in Fig. 4.3. The only sensitivity with an appreciable

magnitude on another continent is that of anthropogenic surface SOx emissions (see panel

(a) of Fig. 4.4), which is widely positive, suggesting that import to the United States of

sulfate aerosol in the model is possibly too high. This could come from overestimates

of exterior SOx emissions, or from over-efficient transport / production of sulfate from

SO2. Figure 4.4 shows sensitivities with respect to initial conditions, displaying just the
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values at 900 hPa. Values peak in the 900-700 hPa range (initial concentrations closer to

the surface are less influential owing to quick depositional losses), but are still one to two

orders of magnitude smaller than emissions sensitivities over the course of the simulation, as

the average aerosol lifetime is much shorter than one month. Figure 4.5 shows the column

integrated sensitivity with respect to the heterogeneous reaction probability for formation of

HNO3. The distribution is similar to that for the sensitivity with respect to NOx emissions,

both of which are positive in regions where nitrate aerosol was over-estimated (Midwest)

and negative in regions where nitrate was under-estimated (Southwest). However, these

sensitivities are again much lower than those with respect to emissions, even if they are

integrated over the horizontal model domain.

4.4.3 Optimization

The adjoint sensitivities are used as gradients to minimize the cost function. To simplify the

optimization process, we do not allow the scaling factors for initial conditions or kinetic

parameters to be variable, as, assuming all are equally uncertain, they were found to

be much less critical than emissions parameters. Each emissions inventory is ascribed a

standard 100% uncorrelated error. The significance of the prior information is thus more

of a smoothness constraint than a rigorous estimate of prior uncertainty (Rodgers, 2000).

Figure 4.6 shows the difference between predictions and observations of aerosol nitrate and

sulfate after only eight iterations, by which point the cost function has been reduced by

40%. Note that for displaying the discrepancy between predictions and observations, Figs.

4.1 and 4.6 show the difference between the monthly average concentrations; however, it

is the differences between the 24 h concentrations on every third day (the frequency of the

observations) that are actually used as forcing for the adjoint model. Estimates of sulfate

aerosol still lie within a reasonable range (±1 µg) of the observations. Estimates of nitrate

aerosol have been substantially improved, particularly in the central Midwest.
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4.4.4 Analysis of posterior emissions

The real interest lies the changes in the model parameters that minimize the cost function.

The prior and posterior emissions estimates are shown in Fig. 4.7, again displaying only

emissions from sectors with significant differences from the prior estimates. Surface emis-

sions of anthropogenic NOx also increased in the Southwest and southern part of California,

while SOx emission were generally reduced rather uniformly. The largest adjustments were

made to the NH3 inventories, with large reduction in the central Midwest, and an increase

in anthropogenic NH3 in the Southwest. The total magnitude of the posterior natural

and anthropogenic NH3 emissions in the United States is 0.10 Tg / month, reduced by

12% from the prior inventory. Beginning with a similar prior estimate (Park et al., 2004),

Gilliland et al. (2006) found a 40% reduction in NH3 emissions, including northern Mexico

and southern Canada. The scaling from the present study is likely less severe owing to

the flexibility of the adjoint calculation to redistribute NH3 emissions rather than simply

scale the entire domain magnitude up or down. Similar comparisons between aggregated

vs resolved inversions were found in Kopacz et al. (submitted).

A conclusion of Gilliland et al. (2006) was that observations of wet NH+
4 (i.e., dissolved

NH3 and aerosol NH+
4 ) were required to constrain NH3 emissions unless the sulfate and

nitrate budgets were verified. Here we have in essence taken the opposite approach, having

based the inversion on observations of sulfate and nitrate; hence it is reasonable to inquire

how the estimates of NH+
4 using the posterior emissions compare with observations. We

compare measurements of NH+
4 from the CASTNet network (Baumgardner et al., 2002)

using both the prior emissions inventory and the posterior inventory obtained using the

optimized scaling factors from Section 4.4.3. Figure 4.8 shows the comparison. Estimates

of NH+
4 are largely improved throughout the Midwest. Posterior estimates of NH+

4 now

also capture the observed increase in the Southwest that was entirely missing from the

prior estimate, though the model now overestimates the magnitude of this maximum.

Nevertheless, that both NH+
4 and NO−

3 concentrations were being originally underpredicted
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in this area implies that the source of error is related to both, which would not be explained

by biases in the observations owing to coarse mode NO−
3 from uptake on dust.

4.5 Attainment

The model response can be defined as a metric of non-attainment for ambient aerosol

concentrations,

Ja =
1
2

∑
i,j∈U.S.

θ(ai,j)a2
i,j , (4.9)

where

ai,j =

∑
k̂

24hci,j,k̂

− γa, k̂ = {SO2−
4 , NO−

3 , NH+
4 },

and

θ(a) =

 0 a ≤ 0

1 a > 0

Use of the L2 norm emphasizes peak concentrations, which are of most concern for air

quality. The air quality threshold is γa, here taken to have a value of 10 µg m−3. Although

this threshold is lower than the actual yearly NAAQS standard of 15 µg m−3, here we have

not included carbonaceous aerosol in the set of active species, k̂.

4.5.1 Regional variability

First we consider the month of July, 2001. The contribution of ammonium aerosol to non-

attainment, as defined by Eq. (4.9), is significant. Figure 4.9, panel (a), shows the average

ammonium concentrations in locations where θ(a) = 1. Figure 4.9, panel (b), shows the

emissions of NH3, plotted as percentages of the total emissions of NH3 throughout the

United States.

The sensitivities of Ja with respect to the various emissions inventories listed in Table
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4.1 are calculated with a single evaluation of the forward and adjoint models. Shown in

Fig. 4.9 are the sensitivities of Ja with respect to emissions of NH3, also reported as a

normalized percentage, (
∂Ja

∂pENH3

) (
pENH3

Ja

)
× 100%.

These sensitivities give the linear approximation of the percent reduction in non-attainment

achieved per percent reduction in emissions. For example, a non-attainment sensitivity of

10% in a particular location would imply that reducing emissions by 25% in that location

would cause a 2.5% reduction in Ja. When γa > 0, these sensitivities can exceed 100%.

The combination of the three plots in Fig. (4.9) provides a clear and quantitative way of

analyzing air quality attainment (Hakami et al., 2006). The distribution of non-attainment,

panel (a), shows locations that will benefit from implementation of emissions regulations

that enforce air quality attainment. The distribution of the emissions, panel (b), shows

the areas most heavily burdened by any simple emissions abatement strategy, while the

adjoint sensitivities in panel (c) show locations where reducing emissions would actually

be the most effective towards achieving air quality attainment. While a bulk of the NH3 is

emitted in the northern midwest, it is the sources of NH3 that are collocated with sources

of SOx further east that ultimately contribute most substantially to the non-attainment

regions. The disparity between these three plots concisely depicts the challenge in designing

regulation measures to control long-lived pollutants.

4.5.2 Seasonal variability

Next we consider the seasonal dependence of the non-attainment sensitivities. Figure 4.10

shows the normalized sensitivities of Ja, evaluated in July, with respect to emissions of

anthropogenic NH3 and SOx. This comparison indicates that the most effective way to re-

duce non-attainment during this month is reduction of anthropogenic stack SOx emissions.

During the summer, reducing NH3 will reduce NH+
4 , and, hence, NO−

3 . However, most

NH3 is in the form of (NH4)2SO4, so simply reducing the available sulfate is more effective.
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Conversely, plots in the second row show sensitivities of Ja with respect to the same emis-

sions sectors, this time evaluated for the month of April. During the spring, the efficacy

of reducing emissions of NH3 vs SOx has now entirely reversed, with NH3 emissions being

the most effective target for abatement. In January, using the posterior emissions from

Section 4.4.3, there are only a few instances of non-attainment; reducing NH3 emissions

during this month is hence very efficient.

The nonlinear relationship between sulfate and total PM mass has been noted previ-

ously (West et al., 1999; Vayenas et al., 2005) to reduce effectiveness of SOx control in

colder seasons. Reducing SOx, and hence sulfate, is rendered ineffective owing to rapid

replacement of SO2−
4 by NO−

3 , formation of the latter being favored by colder tempera-

tures. In the present work, we find this effect to be so extreme that during the winter,

the non-attainment sensitivity of SOx emissions has a sensitivity near the non-attainment

region that is actually negative. If removal of sulfate aerosol in the presence of fixed total

ammonia and nitric acid concentrations causes an entire mole of (NH4)2SO4 to be replaced

by two moles of (NH4)NO3, then the total PM mass would be enhanced by decreases in

SOx emissions.

4.5.3 Long-range influences

It is interesting to note that despite the obvious influence of transport in the differences

between locations of non-attainment and locations of non-attainment sensitivities, nearly

all emissions sensitivities still lie within the contiguous United States. For example, panel

(a) in Fig. 4.11 shows the non-attainment sensitivities with respect to anthropogenic surface

emissions of SOx throughout the Northern Hemisphere, where Ja is defined as in Eq. (4.9).

As noted, nearly all values are located within the Eastern United States. However, if we

consider the following cost function,

Ja,∞ =
∑

i,j∈U.S.

θ(ai,j)ai,j , (4.10)



121

where γa = 0, then the sensitivities with respect to Ja,∞ simply show which emissions are

influencing aerosol concentrations in the United States, at any level. These values (panel

(b)) shown significantly more distributed sensitivities. Even some influence from Eastern

China is apparent. The conclusion is that while transcontinental sources of inorganic fine

aerosol do not (yet) appreciably influence aerosol concentrations in the United States from

an air quality standpoint, they are of importance for determining background levels, which

is of concern for visibility-related regulations (Park et al., 2004, 2006).

Finally, it should be reiterated that conclusions drawn from analysis of the adjoint

sensitivities, which are inherently linear, are valid only over ranges of modest changes

(∼25%) in the emissions inventory (Henze et al., 2007, see examples therein).

4.6 Conclusions

The adjoint of the chemical transport model GEOS-Chem (Henze et al., 2007) has been

applied to evaluate sources of secondary inorganic aerosol throughout the United States.

In an effort to analyze the model’s abilities to estimate nitrate aerosol (previously noted

to be relatively poor (Park et al., 2004, 2006; Liao et al., 2007)), comparisons are made to

measurements of sulfate (SO2−
4 ) and nitrate (NO−

3 ) aerosol from the IMPROVE network

of monitoring stations (Malm et al., 1994) during the month of January, 2002. Significant

discrepancies initially exist for estimates of NO−
3 . The adjoint model is used to select

variable model parameters that most significantly (to a linear approximation) influence this

discrepancy. Parameters initially considered include scaling factors for emissions of SOx,

NOx, and NH3 from several sectors, initial conditions of all tracers, and a few uncertain

heterogeneous reaction probabilities. Not surprisingly, anthropogenic emissions of NH3

were found to be most influential, followed by natural emissions of NH3, anthropogenic

stack emission of SOx, and surface emissions of NOx.

The adjoint model has been used in an inverse modeling framework to constrain the es-

timates of emissions inventories. The posterior emissions inventories show modest changes
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to budgets of NOx and SOx, with significant changes to NH3 emissions, which are largely

reduced in the East and Midwest, and increased in the Southwest. Despite this simple

summary, there is considerable variability in the spatial distributions of the differences

between the prior and posterior emissions. The locations of most significant differences

are not coincident with areas of largest initial discrepancies, underlining the importance

of transport and subsequent chemical and thermodynamic transformations that govern

formation of secondary inorganic aerosol.

Observations of NH+
4 from CASTNet stations are used as an independent assessment of

the posterior emissions. The observations showed discrepancies with predictions using the

prior emissions that were generally similar to that for nitrate aerosol, which would imply

that such differences are not simply a bias in one set of measurements owing to artifacts such

as HNO3 from dust or evaporation / contamination of filter samples. Using the posterior

inventory improves model performance, largely in the Midwest, with some overcorrection

in the Southwest. The magnitude of the total adjustment to the NH3 inventory is similar to

that found in Gilliland et al. (2006), though considerable regional variability is found in the

present study. Overall, inverse modeling constraints from measurements of aerosol SO2−
4

and NO−
3 are shown to be a promising approach towards constraining estimates of NH3

emissions, which have been recognized as highly uncertain and difficult to assess directly

(Pinder et al., 2006; Nowak et al., 2006). In the future, this approach will be applied

to further constrain emissions inventories during other seasons, and to analyze additional

sources of model uncertainty.

The adjoint model provides a convenient means of assessing which emissions are pre-

dicted to most influence air quality non-attainment of fine particulate matter. The disparity

between locations of peak emissions, regions of non-attainment and locations of the non-

attainment sensitivities, highlights the importance of transport in the formation of these

types of aerosols from their gas-phase precursors, and the complications that thus arise

when devising local control strategies for air quality attainment. In July, the inventory
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with the largest non-attainment reducing efficacy is emission of SOx from anthropogenic

(stack) sources. Conversely, in April, SOx controls are rendered ineffective owing to dis-

placement by NO−
3 , favored in cooler seasons. This leaves NH3 as the most effective means

of particulate control in the spring. This finding is in qualitative agreement with the work

of Takahama et al. (2004), which pointed out the importance of NH3 control for air quality

in Pittsburgh, and the findings of Pinder et al. (2007), who reached similar conclusions

based upon economic considerations of the cost to reduce aerosol concentrations in select

locations on the East Coast. Long-range influence is found to be minimal for estimates

of air quality in January, April and July. However, there is some influence in background

concentrations. As noted in previous works by Park et al. (2004, 2006), such influence,

while small, could have important consequences for attainment of regional haze goals.

The benefit of the adjoint model is that estimates of such efficacies are easily calculated

over a range of conditions for minimal computational cost, each time providing detailed

evaluations throughout the model parameter space.
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Table 4.1: Emissions inventories treated as variable parameters.

Emitted species Source sectors considered
SOx surface anthropogenic, stack anthropogenic, ships, biomass burning, biofuel
NH3 anthropogenic, natural, biomass burning, biofuel
NOx surface anthropogenic, stack anthropogenic, lightning
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(a.i) GEOS-Chem NO3
- (a.ii) GEOS-Chem SO4

2-

(b.i) IMPROVE NO3
- (b.ii) IMPROVE SO4

2-

(c.i) GEOS-Chem - IMPROVE NO3
- (b.ii) GEOS-Chem - IMPROVE SO4

2-

Figure 4.1: Predicted (GEOS-Chem) vs observed (IMPROVE) NO−
3 and SO2−

4 for the
month of January, 2002.
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(a) Predicted NO3
- concentrations,  01/02/2002

(b) Predicted NO3
- concentrations,    01/02/2002

(c) Estimated NO3
- representational error ,  01/02/2002

Figure 4.2: Representational error estimate for aerosol nitrate (NO−
3 ). Panels (a) and (b)

show model-predicted average nitrate concentrations at the surface for January 2, 2002,
calculated at 4◦×5◦ and 2◦×2.5◦ resolutions, respectively. These are used to estimate the
representational error for this day at the IMPROVE sites, panel (c).
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(a) Stack SOx (b) Surface NOx

(c) Natural NH3 (c) Anthropogenic NH3

Figure 4.3: Sensitivity of the cost function with respect to emissions scaling factors for the
following inventories: (a) stack SOx, (b) surface NOx, (c) natural NH3, and (d) anthro-
pogenic NH3.
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(a) Stack emissions of SOx (b) Initial concentrations of SO4
2-

(c) Initial concentrations of NO3
- (d) Initial concentrations of NH4

+

Figure 4.4: Sensitivity of the cost function with respect to (a) stack SOx (which saturates
on this plot scale over the United States, see Fig. 4.3 for detail), (b) initial concentrations
of SO2−

4 , (c) initial concentrations of NO−
3 , and (d) initial concentrations of NH+

4 .
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Figure 4.5: Sensitivity of the cost function with respect to the reaction probability for
heterogeneous N2O5 hydrolysis.
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 GEOS-Chem - IMPROVE NO3
-   GEOS-Chem - IMPROVE SO4

2-

(a) Using prior emissions

(a) Using posterior emissions

Figure 4.6: Difference between predicted (GEOS-Chem) and observed (IMPROVE) NO−
3

and SO2−
4 for the month of January, 2002. Predictions are calculated using (a) prior and

(b) posterior emissions inventories (see Fig. 4.7).
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Prior Posterior

(a) Anthropogenic stack SOx

(b) Anthropogenic surface NOx

(c) Anthropogenic NH3

(d) Natural NH3

Figure 4.7: Prior and posterior emissions inventories.
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(a)  CASTNet NH4
+

(b.i)  GEOS-Chem NH4
+, prior emissions

(c.i)  GEOS-Chem NH4
+ , posterior emissions

(b.ii)  GEOS-Chem (prior) - CASTNet 

(c.ii)  GEOS-Chem (posterior) - CASTNet

Figure 4.8: Predicted (GEOS-Chem) vs observed (CASTNet) average NH+
4 concentrations

for January, 2002. Panels (b.i) and (b.ii) use the prior emissions inventories, while panels
(c.i) and (c.ii) use the optimized posterior emissions inventories.
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(a) Non-attaiment (Benefit)

(b) Emissions (Responsibility)

(c) Non-attainment sensitivities (Efficacy)

Figure 4.9: Non-attainment sensitivities: regional variability. Panel (a) shows the average
contribution (µg m−3) of NH+

4 to non-attainment (Ja) during the month of July 2001.
Panel (b) shows the normalized emissions (%) of anthropogenic NH3 during this month,
the non-attainment sensitivities (%) of which are shown in panel (c).
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Anthropogenic NH3 Emissions

July

April

Anthropogenic SOx Stack Emissions

January

Figure 4.10: Non-attainment sensitivities: seasonal variability. Shown are the normal-
ized non-attainment sensitivities (%) with respect to anthropogenic emissions of NH3 (left
column) and anthropogenic stack emissions of SOx (right). The efficacy of reducing SOx

emissions dominates in July, while NH3 controls are more efficient during April and Jan-
uary. Evaluation for January uses the posterior emissions estimate from Section 4.4.3.
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(a) Sensitivity of 

(b) Sensitivity of 

Figure 4.11: Non-attainment sensitivities: long-range influences. Shown are the normalized
non-attainment sensitivities (%) with respect to anthropogenic surface emissions of SOx

given two different forms of the non-attainment cost function Ja.
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Chapter 5

Global Secondary Organic Aerosol
Formation from Isoprene
Oxidation1

5.1 Introduction

Secondary organic aerosol (SOA), formed when oxidized products of volatile hydrocarbons

condense, often comprises a substantial portion of the organic mass fraction of atmospheric

aerosols. The prevalence of organic carbon aerosol on a global scale makes identifying

significant sources of SOA an important task, as carbonaceous aerosol is known to strongly

influence air quality and climate change. Model predictions of organic carbon aerosol

concentrations have exhibited a low bias not present in coincident predictions of black

(elemental) carbon, with this bias being attributed to under-prediction of SOA (Heald

et al., 2005; Tsigaridis and Kanakidou, 2003).

Isoprene (C5H8) is the second most abundant hydrocarbon emitted into the Earth’s

atmosphere after methane (∼500 Tg yr−1 (Guenther et al., 1995)). Although it has long

been assumed that all its products remain in the gas phase, if isoprene were to yield even

a small amount of aerosol, this would have a profound effect on global sources of organic
1Henze, D. K., and J. H. Seinfeld (2006), Global secondary organic aerosol formation from isoprene

oxidation, Geophys. Res. Let., 33, L09812, doi:1029/2006GL025976
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aerosol. Biogenic volatile organic compounds other than isoprene, such as terpenes and

sesquiterpenes, are presently believed to be the largest source of SOA mass on a global

scale, with model estimates of the magnitudes of these sources ranging from 12 - 70 Tg yr−1

(Kanakidou et al., 2005). Recent laboratory chamber studies of isoprene photooxidation

show that SOA yields are 1-2% at high NOx levels (Kroll et al., 2005) and ∼3% at low

NOx levels (Kroll et al., 2006). Furthermore, organic aerosol collected in forested areas

is strongly indicative of an isoprene precursor (Claeys et al., 2004a,b; Ion et al., 2005;

Kourtchev et al., 2005; Matsunaga et al., 2003). The impact of such a potentially large

source of carbonaceous aerosol necessitates careful investigation of the fate of isoprene

oxidation products on a global scale.

5.2 SOA modeling

Claeys et al. (2004b) estimated SOA production from isoprene to be 2 Tg yr−1 by simply

multiplying an estimate of global isoprene emissions by an observed yield of condensed

polyols from isoprene; subsequent recognition of additional SOA production pathways in-

creases this estimate (Claeys et al., 2004a). Cloud processing of isoprene oxidation products

alone has been calculated to contribute 1.6 Tg yr−1 of SOA (Lim et al., 2005). Matsunaga

et al. (2005) estimated a source of SOA from isoprene in the range of 10-120 Tg yr−1;

however, this study neglects the effects of temperature and background organic particulate

matter concentrations on gas - particle partitioning, factors known to strongly influence

SOA formation.

Recent availability of data from laboratory chamber studies of isoprene oxidation (Kroll

et al., 2005, 2006) allow us to now assess the global SOA forming potential of isoprene

in a more fundamental manner. Several factors influence SOA formation, such as the

ambient NOx concentration, RO2 concentration, temperature, and heterogeneous reactions

(Limbeck et al., 2003; Czoschke et al., 2003; Edney et al., 2005; Kroll et al., 2006). Until

the mechanisms that govern these types of behavior are precisely known one must use
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empirical parameterizations based on actual laboratory data (Kanakidou et al., 2005).

For inclusion of SOA in global models, the framework of the two-product model (Odum

et al., 1996; Seinfeld and Pankow , 2003) provides a method for predicting the formation

of SOA based upon empirical parameters determined from laboratory chamber studies

even when the exact chemical nature of the aerosol products, or even the intermediate

gas-phase oxidation products, are not known (Griffin et al., 1999b). The model describes

the oxidation of a parent hydrocarbon to produce two representative gas-phase products

with stoichiometric coefficients α1 and α2. Subsequent partitioning of these products into

the aerosol phase is governed by the availability of pre-existing organic aerosol and by

their equilibrium partitioning coefficients, K1, K2, taking into account the temperature

dependence of the partitioning coefficients using the Clausius-Clapyeron equation. At the

moment condensation onto other (non-organic) aerosol species is not considered, though

this would afford increased SOA formation from all species (Tsigaridis and Kanakidou,

2003).

We simulate global SOA formation using the chemical transport model GEOS-Chem

(version 7.2.4 with a horizontal resolution of 4◦ × 5◦ and 30 layers up to 0.01 hPa, GEOS-

3 meteorological fields (Park et al., 2004)), previously implemented with a gas-particle

partitioning model of SOA formation from terpenes (Chung and Seinfeld , 2002; Heald

et al., 2005), updated here to include formation of SOA from oxidation of isoprene using

parameters shown in Table 5.1. The α’s and K’s were derived from the final amount of

SOA formed in chamber studies of isoprene oxidation by OH (Kroll et al., 2006) using the

same method as Griffin et al. (1999a). We assume reaction with OH is the only pathway for

formation of SOA from isoprene. Though reaction with O3 or NO3 may also lead to SOA

formation, the magnitudes of these sources are assumed to be minor, because an order of

magnitude more isoprene reacts with OH than with O3 or NO3 on a global scale (Calvert

et al., 2000). We assign a molecular weight of 130 for the oxidation products from isoprene,

which is that of tetrol, a compound prevalent in SOA that originates from isoprene (Claeys
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et al., 2004b).

An issue with empirical partitioning models is that the conditions of the chamber studies

from which the yield parameters are derived may not be representative of atmospheric

conditions. The main concern has been that NOx levels in these experiments tend to be

larger than those in the troposphere. The experiments used to derive the yield parameters

for isoprene given here were carried out under low NOx concentrations (<1 ppb) and at

cooler temperatures more relevant to tropospheric conditions (Kroll et al., 2006). Still, a

single set of yield parameters may not fully represent SOA formation throughout the entire

range of conditions present in the atmosphere — further laboratory and modeling studies

are required to explicitly specify the dependence the SOA yield parameters on the chemical

environment.

Implementation of this model on global scales requires knowledge of thermophysical

parameters that are not easily determined experimentally. The enthalpy of vaporization of

SOA, 4Hv, is critical for extrapolating the equilibrium gas-particle partition coefficients to

colder temperatures (Tsigaridis and Kanakidou, 2003). The value of 4Hv depends upon

the nature of the SOA and how it was formed (Offenberg et al., 2006), though there is not

yet enough experimental data available to justify the use of more than a single value of4Hv

for all SOA. The base case value of4Hv used here, 42 kJ mol−1 (Chung and Seinfeld , 2002),

originally considered a lower estimate in comparison to values from similar studies which

ranged as high as 156 kJ mol−1, is perhaps in fact quite reasonable, as recent experimental

studies of the temperature dependence of SOA formed from α-pinene have placed 4Hv

closer to the lower estimates (Offenberg et al., 2006; Stanier et al., 2006). The sensitivity

of SOA predictions to the aqueous solubility of the oxidation product species, governed

by an estimated average Henry’s law constant of the oxidation products, H, has also been

mentioned by Tsigaridis and Kanakidou (2003), though the consequences of variations in

H on global SOA predictions have not yet been explored. Loss of these products by wet

removal depends strongly on H. Given that polyols resulting from isoprene oxidation are
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more soluble than many of the previously identified species in SOA, which were taken to

have an average Henry’s law constant of 105 M atm−1 (Sander , 1999), we consider the

effect of increasing the Henry’s law constant of the oxidation products to 106 M atm−1,

and for comparison, decreasing it to 104 M atm−1.

5.3 Results and conclusions

Model predictions of global yearly average SOA concentrations for the year March 2001 -

February 2002 are shown in Figure 5.1. We select this time period because it encompasses

the ACE-Asia campaign, for which the observed amount of organic carbon aerosol in the

free troposphere exceeds predictions by the base case model by a factor of 10-100 (Heald

et al., 2005). Panels (a) and (c) show the total concentrations of SOA generated by the

existing (base case) biogenic VOCs (terpenes and OVOCs) at the surface and at 5.2 km,

respectively. Panels (b) and (d) show total SOA concentrations when isoprene is included

as an additional source of SOA. The difference between these two simulations is striking,

most notably in the magnitude of the increases in the free troposphere, where typically

more than 70% of the SOA is from isoprene. SOA concentrations increase by a factor of

1.5 to 3 in regions of relatively high SOA concentrations, and they increase by more than a

factor of 10 in remote marine regions where SOA concentrations are small (<0.01 µg m−3),

such as the Indian and South Central Pacific oceans.

The yearly average total SOA burden (BT ) and the net yearly SOA production (PT )

are given in Table 5.2, where the total production is also broken down into contributions

from isoprene (PI) and from the original set of VOCs (PO). The amount of SOA produced

directly from isoprene is 6.2 Tg yr−1, almost as large as the original SOA source in the base

calculation, 8.7 Tg yr−1. The presence of this much additional organic substrate enhances

SOA formation from other sources by 17%. The total SOA burden more than doubles, and

the lifetime of the SOA from isoprene (13.5 d) is twice that of the base case SOA (6.7 d).

Results from a one month simulation with model resolution of 2◦ × 2.5◦ were equivalent.
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Two factors give rise to the distinct distributions and lifetimes of the SOA formed from

isoprene compared to the base case set of VOCs. Emissions of isoprene are generally much

greater. As a result, isoprene is not completely oxidized near its sources, and substantial

amounts of isoprene can be lofted to much greater altitudes. Also, gas-particle partitioning

of the isoprene oxidation products is shifted less toward the particle phase than that of the

products of the base case VOCs; hence, the lifetime of the isoprene oxidation products is

also greater. The combined effect of these factors increases SOA precursor concentrations

in the free troposphere where partitioning to the aerosol phase is enhanced owing to lower

temperatures, leading to formation of SOA in regions where there was little in the base

case. Although this increase alone is not enough to account for the discrepancy between

predicted and observed tropospheric organic carbon aerosol in the region studied during

the ACE-Asia campaign (Heald et al., 2005), it does significantly impact our global picture

of organic carbon aerosol distributions.

The total amount of isoprene predicted to be oxidized by OH is 209 Tg yr−1; the

global isoprene SOA “yield” is 2.9%, which is essentially the same as those from the low-

NOx chamber experiments (∼3%). We find that simply calculating the formation of SOA

from isoprene from a direct calculation (wherein SOA is formed, irreversibly, as a constant

percentage of the amount of isoprene that reacts) leads to lower SOA burdens than the two-

product model, in contrast to previous studies comparing these methods (Lack et al., 2004)

and Tsigaridis and Kanakidou (2003). The reason for this discrepancy is, as noted earlier,

a signifcant portion of the SOA from isoprene is formed from the semivolatile oxidation

products that only condense substantially at lower temperatures, an effect that may not

be as critical for modeling SOA from sources with greater yields.

We examine SOA levels predicted by the base case model (without isoprene as a source

of SOA) when using a reasonably larger value of 4Hv = 50 kJ mol−1 or when H = 104

M atm−1. Use of this value of 4Hv leads to a modest increase in the global SOA burden

of 0.08 Tg, and average SOA concentrations in the troposphere increase by a factor of
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2 to 3. Decreasing H increases the burden by almost 40%. While these are substantial

consequences, the overall magnitude of these effects is still small compared to increases of

SOA concentrations from isoprene, as shown in Figure 5.2. When isoprene is included as

a source of SOA, increasing H to 106 M atm−1 has little overall effect, as the oxidation

products are effectively completely soluble beyond H ≥ 105 M atm−1.

Including isoprene as a source of SOA causes substantial increases in predicted SOA

concentrations, particularly in the free troposphere and remote marine environments. A

detailed comparison with measured organic carbon aerosol is now in order. This source

of SOA may help explain observations of organic carbon aerosol, noted previously to be

under-predicted by this (and others) model in these regions (Heald et al., 2005; Tsigaridis

and Kanakidou, 2003), particularly considering recent revisions in estimates of isoprene

emissions (Guenther et al., 2006). This study highlights the need for further research

into the chemical fate of the oxidation products of isoprene (Kroll et al., 2006) and the

importance of developing SOA models that can explicitly represent condensation of oxida-

tion products normally considered too volatile to contribute to organic aerosol formation

(Donahue et al., 2006). These results may have implications for climate change given the

magnitude of the predicted top of the atmosphere radiative forcing of organic carbon in

year 2100 climate (Liao et al., 2006).
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Figure 5.1: Yearly average total SOA concentrations during the year March 2001 - Feb
2002 (a) at the surface without isoprene source (b) at the surface with isoprene source (c)
at 5.2 km without isoprene source (d) at 5.2 km with isoprene source.

13

Figure 1.2: Relative increases in global average SOA concentration profiles with respect to
the base case model. Line (1) shows the increase in SOA resulting from including isoprene
as a source. The two lines at the left show increases in SOA formed from non-isoprene
sources due to (2) increasing !Hv to 50 kJ mol−1 (3) decreasing H to 104 M atm−1. Line
(4) shows increases in SOA from including isoprene as a source but increasing H to 106 M
atm−1.

Figure 5.2: Relative increases in global average SOA concentration profiles with respect to
the base case model. Line (1) shows the increase in SOA resulting from including isoprene
as a source. The two lines at the left show increases in SOA formed from non-isoprene
sources due to (2) increasing 4Hv to 50 kJ mol−1 (3) decreasing H to 104 M atm−1. Line
(4) shows increases in SOA from including isoprene as a source but increasing H to 106 M
atm−1.



154

Table 5.1: Stoichiometric coefficients, αi, and equilibrium partitioning coefficients, Ki, for
SOA formation from low NOx chamber experiments of reaction of isoprene with OH (Kroll
et al., 2006).

Product αi Ki[m3µg−1] b

1 0.232 0.00862
2 0.0288 1.62

aReference temperature is 295 K

Table 5.2: Summary of yearly SOA production rates and average burdens as a function of
SOA sources, SOA enthalpy of vaporization (4Hv), and the Henry’s law constant of the
oxidation products (H).

Sourcec 4Hv H PO PI PT BT

[kJ/mol] [M/atm] [Tg/yr] [Tg/yr] [Tg/yr] [Tg]
O 42 105 8.7 - 8.7 0.16
O + I 42 105 10.2 6.2 16.4 0.39

Sensitivity Calculations
O 50 105 11.1 - 11.1 0.24
O 42 104 9.7 - 9.7 0.22
O + I 42 106 10.1 6.1 16.2 0.38

bI = isoprene, O = other biogenic VOC’s
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Chapter 6

Modeling High vs Low-Yield
Pathways of Secondary Organic
Aerosol Formation from Aromatic
Hydrocarbons

6.1 Introduction

Organic aerosols play an important role in global climate (Kanakidou et al., 2005). A sig-

nificant fraction of organic aerosol material results from the gas-phase oxidation of volatile

hydrocarbons to yield semivolatile products that condense into the particulate phase; this

is referred to as secondary organic aerosol (SOA). At present, measured levels of organic

aerosol tend to exceed those predicted by global chemical transport models (Heald et al.,

2005, 2006). While it is predicted that, on the global scale, secondary organic aerosol from

biogenic sources substantially exceeds that from anthropogenic sources (Tsigaridis et al.,

2006), data from recent field studies suggest that SOA from anthropogenic hydrocarbons

might be more significant than previously thought (de Gouw et al., 2005; Volkamer et al.,

2006).

Among anthropogenic hydrocarbons, aromatic compounds are generally considered to

be the most important SOA precursors. It has recently been established that the SOA
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yields (aerosol yield is defined as the ratio of the mass of organic aerosol produced to the

mass of parent hydrocarbon reacted) from aromatics, as well as those from a variety of

other hydrocarbons, depend critically on the prevailing NOx level (Hurley et al., 2001;

Martin-Reviejo and Wirtz , 2005; Song et al., 2005; Johnson et al., 2004, 2005; Ng et al.,

2007). This discovery led to a re-evaluation of aromatic SOA yields (Ng et al., 2007)

from the historical yields of Odum et al. (1996, 1997) that were measured under high-NOx

conditions. In particular, aromatic yields under the low-NOx conditions typical of most

of the global atmosphere significantly exceed those under high-NOx conditions typical of

urban cores (and of past laboratory chamber experiments). However, given that sources

of aromatics are likely co-located with sources of NOx, the significance of this finding on

the global SOA burden is not readily apparent.

The recent data on SOA yields from aromatic hydrocarbons prompt a re-evaluation

of the contribution of aromatic SOA to the global SOA production rate and burden. In

the current study, the GEOS-Chem global chemical transport model is updated to include

abbreviated aromatic oxidation chemistry and SOA formation from aromatics.

6.2 Summary of SOA yields from aromatic hydrocarbons

The SOA-forming potentials of m-xylene, toluene, and benzene have been measured in a

series of laboratory chamber experiments (Ng et al., 2007). Atmospheric reaction of these

aromatics with the hydroxyl radical (OH) initiates a complex series of gas-phase reactions,

the mechanisms of which are not fully understood (Calvert et al., 2002). As noted above,

the crucial factor governing the nature of the gas-phase chemistry and subsequent aerosol

formation is the NOx level. Experiments were conducted under both low- and high-NOx

conditions; these correspond to NOx levels of about 1 parts-per-billion by volume (ppb)

and several hundred ppb, respectively.

SOA yields of the three aromatics studied are highly dependent on the prevailing NOx

level. Under high-NOx conditions, measured yields are in general agreement with those
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reported by Odum et al. (1996, 1997) for toluene and m-xylene, in the range of 5 to 10%,

with a strong dependence on the amount of organic aerosol present. The first studies

of SOA yields from benzene reported yields in the range of 10% for both high and low-

NOx conditions (Martin-Reviejo and Wirtz , 2005); Ng et al. (2007) found considerably

higher yields for benzene, nearly 30% under high-NOx conditions, party owing to kinetic

enhancement. Under low-NOx conditions, all three compounds exhibit constant yields, in

the range of 30%.

The mechanisms for atmospheric oxidation of both biogenic and anthropogenic hydro-

carbons are complex and not fully understood; it does appear, however, that the low- and

high-NOx behavior of SOA formation hinges on the competitive reactions of the peroxy

radicals (ARO2) that result from initial attack of OH followed by O2 addition (Johnson

et al., 2004, 2005; Presto et al., 2005; Kroll et al., 2006; Ng et al., 2007).

AROM + OH kOH−→ ARO2 (R1)

The peroxy radicals react either with the hydroperoxyl radical (HO2) or NO, depending on

the relative concentrations of HO2 and NO. Under low-NOx conditions, reaction with HO2

is favored, and the resulting products, including hydroperoxides, are generally less volatile

than those that result from the NO reaction path. This competition can be represented as

follows:

ARO2 + HO2
kH−→ αHSOGH (R2)

ARO2 + NO kN−→ α1SOG1 + α2SOG2 (R3)

where SOG designates gas-phase semivolatile products, and the α’s are mass-based stoi-

chiometric coefficients. The fact that, for all three aromatics, the SOA yield is constant

under low-NOx conditions implies that the semivolatile products are essentially nonvolatile;

thus, the RO2 + HO2 pathway can be represented as leading to a single nonvolatile prod-
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uct, SOGH = SOAH . Since the high-NOx pathway exhibits yields that depend on the total

amount of absorbing organic aerosol, we use the customary two-product model for SOA

formation, originally formulated by Odum et al. (1996, 1997); SOG1 and SOG2 represent

these products, which have associated gas-particle partitioning equilibrium constants, K1

and K2. Parameters describing yields under both sets of NOx levels are given in Table 1.

Equilibrium constants and stoichiometric coefficients are based on laboratory studies of Ng

et al. (2007), where the latter are adjusted to reflect formation of SOG species directly from

the peroxy radical rather than the parent hydrocarbon. An implicit assumption, supported

by kinetics simulations (Ng et al., 2007), is that reaction (R2) and reaction (R3) are the

primary sinks of the peroxy radicals under low and high-NOx conditions, respectively.

6.3 Aromatic SOA formation in GEOS-Chem

In the current study, the GEOS-Chem global chemical transport model (version 7-04-11

with a horizontal resolution of 2◦×2.5◦ and 30 layers up to 0.01 hPa, GEOS-4 meteorological

fields) is used to simulate one year of present day conditions (2004). This model includes

detailed simulation of gas-phase tropospheric chemistry (e.g., Bey et al., 2001; Hudman,

2007) in addition to external mixtures of several aerosol components (Park et al., 2004,

2006). Previous versions have been implemented with a gas-particle partitioning model of

SOA formation from terpenes, alcohols, sesquiterpenes (Chung and Seinfeld , 2002; Heald

et al., 2005) and isoprene (Henze and Seinfeld , 2006). The addition of abbreviated aromatic

oxidation chemistry and SOA formation from aromatics to the chemical reactions and SOA

module in GEOS-Chem is described in the following sections.

6.3.1 Aromatic global emissions

Global emissions of benzene, toluene and xylene are taken from the Emission Database

for Global Atmospheric Research (EDGAR V2.0) (Olivier et al., 1996, 1999) for 1990 and

scaled to the year 1998 using liquid fossil fuel usage from the Global Emission Inventory
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Activity (GEIA) project (Benkovitz et al., 1996) following Bey et al. (2001). Total emissions

are 7.3, 7.3 and 4.7 Tg / year for benzene, toulene and xylene, respectively. The yearly

average emission fluxes of each aromatic species, and the combined total, are shown in

Fig. 6.1. Primary sources are road transport, solvent use and biomass burning, the latter

being a pronounced source of benzene in India.

6.3.2 Implementation of aromatic SOA formation

Gas-phase oxidation of each parent aromatic hydrocarbon (R1) and subsequent reaction

of the peroxy radical product with HO2 (R2) and NO (R3) is calculated online as an

additional part of the tropospheric chemical reaction mechanism. By explicitly treating the

competition between these two pathways, this implementation allows natural transitions

between low and high-yield environments as governed by temperature and concentrations

of ARO2, HO2 and NO, avoiding static delineation of these regimes based upon VOC / NOx

ratios (Song et al., 2005; Tsigaridis et al., 2006). Parameters for calculating the reaction

rate constants for these steps are listed in Table 6.2. Kintetic parameters for reaction

of the aromatic species with OH (the rate limiting step in peroxy radical formation) are

from Calvert et al. (2002). Rate constants for peroxy radical reactions, (R2) and (R3), are

from Atkinson et al. (1997), assuming similar temperature dependence as peroxy radical

reactions with isoprene, as most reactions of hydrocarbons with NO and HO2 have similar

kinetics (Lightfoot et al., 1992; Eberhard and Howard , 1997). All forms of xylene are

assumed to behave as m-xylene for both gas and aerosol processes.

Calculation of SOA formation follows the approach outlined in Chung and Seinfeld

(2002). SOA concentrations are governed by the gas-particle equilibrium relation,

[SOAi,j ] =
[SOGi,j ]
Ki,jM0

where M0 is the total mass of organic aerosol from both primary and secondary organic
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aerosol sources.1 The ratio of organic to carbon mass is assumed to be 2.1. Though

this differs from previous studies that used a ratio of 1.4 (Henze and Seinfeld , 2006; Liao

et al., 2007; Heald et al., 2006; Zhang et al., submitted; van Donkelaar et al., 2007), 2.1 is

recommended for non-urban aerosols (Turpin and Lim, 2001). The sensitivity of the calcu-

lation with respect to this assumption is explored in Section 6.5. The Clausius-Clapeyron

equation is used to extrapolate equilibrium constants to tropospheric temperatures. The

enthalpy of vaporization for SOA, a major source of uncertainty in such calculations (Tsi-

garidis and Kanakidou, 2003; Henze and Seinfeld , 2006), is assumed to be 42 kJ mol−1

for all species, in the range of limited available experimental data (Offenberg et al., 2006;

Stanier et al., 2006).

6.4 Simulation of global aromatic SOA

The predicted contributions of benzene, toluene, and xylene to global aromatic SOA via

high- and low-yield pathways (the opposite of the NOx levels) and the percentage of the

aromatics that react via each pathway are given in Table 6.3. Thus, 49% of globally

emitted benzene, for example, reacts via reaction R2, the high-yield path, whereas only

26% of xylene follows this route. Unexpectedly, the less reactive aromatics, as measured by

their OH reaction rate constants, actually produce more SOA globally. The explanation

is that lower reactivity affords the parent hydrocarbon more time to be transported to

regions of lower [NOx]/[HO2] ratios, where ultimately, once reacted, the SOA yield is

larger. Proportionately more of a reactive molecule like xylene is consumed in regions in

which the NOx levels are more characteristic of the source emission areas. On a global

average, 40% of the total aromatics proceed through the high yield pathway. As a result,

75% of global aromatic SOA is produced via the low-NOx pathway.

Figure 6.2 shows the predicted annual average, surface-level concentration of aromatic
1The standard model, as well as some other studies (Tsigaridis and Kanakidou, 2003), considers con-

densation directly on sulfate aerosol, which is not included in these simulations.



161

SOA by season. The concentrations generally reflect the distribution of areas with sub-

stantial anthropogenic emissions. Peak SOA concentrations form from benzene in India

during DJF, while concentrations in the eastern parts of the United States and Europe are

low owing to elevated [NOx]/[HO2] ratios during these months. During the summer, SOA

formation in the latter areas is facilitated by lower NOx concentrations and is not inhibited

by increased temperatures as formation of SOA via the low-NOx pathway is treated as

irreversible.

6.5 Anthropogenic vs biogenic SOA

Table 6.4 presents the predicted production rates of SOA from the three aromatics (Tg/yr)

and their global burdens (Tg), as compared with the values for total biogenics, about 50%

of which is attributable to isoprene. Even though aromatic SOA is appreciable, the global

SOA burden continues to be dominated by biogenic sources, as predicted based on the best

current SOA yields from laboratory chamber studies.

While the bulk of the total modeled SOA is biogenic in origin, there are regions of the

global distribution where concentrations of SOA from aromatics are predicted to be equal

or larger. Figure 6.3 shows the natural log of the ratio of anthropogenic (aromatic) to

biogenic SOA concentrations,

R = ln
(

[SOAanth]
[SOAbiogenic]

)

excluding locations where the total SOA is less than 1% of the maximum. On a yearly

average, the only region predicted to have a substantial anthropogenic fraction of SOA is

a small area of outflow from eastern Asia. However, during winter, much of the outflow

regions in the northern hemisphere are dominated by anthropogenic SOA. For example,

Figure 6.4 shows the vertical distribution of SOA types at 75◦ W. Nevertheless, concen-

trations are still an order of magnitude smaller than the total (primary plus secondary)
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organic aerosol.

It is interesting to note that, as a result of revision of biogenic emissions inventories,

the predicted burden of SOA from biogenic sources is more than double that of previous

works (Henze and Seinfeld , 2006). Isoprene and terpene emissions are calculated using

MEGAN (Guenther et al., 2006), which gives a total yearly emission of 462 Tg. Emissions of

other SOA precursors are calculated the same as previously (see Chung and Seinfeld , 2002;

Heald et al., 2005). Isoprene emissions are about 20% higher than previous global modeling

studies of SOA from isoprene with this model (Henze and Seinfeld , 2006; Heald et al., 2006;

Liao et al., 2007), which had used a modified (Bey et al., 2001) emissions from Guenther

et al. (1995). Given the limited data used to construct the older inventory, and that the

newer inventory shows improved agreement with in-situ data as well as consistency with

top-down constraints from satellite measurements of formaldehyde (Palmer et al., 2003;

Shim et al., 2005), it is likely the latter inventory represents substantial improvements.

Even though emissions inventories for non-isoprene biogenic SOA precursors (terpenes,

alcohols, sesquiterpenes) are the same as in previous works, the resulting SOA from these

sources is also more than double. The consequence of assuming that the total organic /

carbon mass ratio is 2.1, rather than 1.4, causes a 10-20% increase in SOA concentrations

from all biogenic sources.

6.6 Conclusions

Simulation of formation of SOA from the aromatic species benzene, toluene and xylene

is added to the global chemical transport model GEOS-Chem. A simple mechanism is

presented that accounts for the competition between low and high-NOx pathways on SOA

formation in a continuous fashion. Depending upon the immediate chemical environment,

secondary peroxy radicals from photooxidation of aromatics by OH react with either NO

or HO2. Formation of SOA from reaction with NO leads to reversible formation of SOA

following the two-product model of Odum et al. (1996, 1997) using empirically determined
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yield and partitioning coefficients from the high-NOx studies of Ng et al. (2007). Aromatic

peroxy radicals that react with HO2 are treated as forming SOA irreversibly, following the

low-NOx results of Ng et al. (2007).

The dependence of SOA formation on the NOx environment for aromatic leads to some

surprising predictions, with potential implications for other sources of SOA noted to depend

strongly on the NOx environment (Song et al., 2005; Kroll et al., 2006). Previously assumed

to generate negligible amount of SOA owing to its low reactivity with OH, benzene is

estimated in this work to be the most important aromatic species with regards to formation

of SOA. Its low initial reactivity allows benzene to be transported away from source regions,

where [NOx]/[HO2] ratios are high, to more remote regions, where this ratio is lower and,

hence, the ultimate yield of SOA is higher. In total, while only 40% percent of the aromatic

species react via the low-NOx pathway, nearly 75% of the aromatic SOA is formed via

this mechanism. Predicted SOA concentrations from aromatics in the eastern United

States and Europe are actually largest during the summer, when NOx concentrations are

lower. Influence of NOx variability on SOA formation is particularly interesting as current

models would appear to underestimate seasonal NOx cycles in these areas as indicated by

observations from GOME (van Noije et al., 2006).

Even though the predicted burden and production rate of aromatic SOA is twice that

of previous estimates (Tsigaridis and Kanakidou, 2003), the contribution of these sources

to global SOA is small relative to biogenic sources. Biogenic sources are estimated to

comprise 90% of the global SOA, about half of which comes from isoprene (Henze and

Seinfeld , 2006). However, owing to differences in spatial distributions of sources and seasons

of peak production, there are regions in which aromatic SOA is predicted to contribute

substantially, and even dominate, the local SOA concentrations, such as outflow regions

from North America and South East Asia during the wintertime. These estimates highlight

the importance of additional studies of the NOx dependence of SOA formation from other

species, and the role that such dependance plays on SOA yields of long lived hydrocarbons
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in general.
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Table 6.1: Stoichiometric coefficients, αi,j , and equilibrium partitioning coefficients, Ki,j ,
for SOA formation derived from high and low-NOx chamber experiments of reaction of
aromatics with OH (Ng et al., 2007). The reference temperature for the Ki,j ’s is 295 K.

Parent aromatic i αi,H αi,1 αi,2 Ki,1 Ki,2

[m3 µ g−1] [m3 µ g−1]
benzene 0.2272 0.0442 0.5454 3.3150 0.0090
toluene 0.2349 0.0378 0.0737 0.4300 0.0470
m-xylene 0.2052 0.0212 0.0615 0.7610 0.0290

Table 6.2: Reaction rate constants, k = AeB/T

Reactiona k298 A B
[cm3 s−1molec−1] [cm3 s−1molec−1] [K]

kOH,B 1.22×10−12 2.33×10−12 -193
kOH,T 3.67×10−12 1.81×10−12 338
kOH,X 2.31×10−11 2.31×10−11 0
kH 1.5×10−11 1.4×10−12 700
kN 8.5×10−12 2.6×10−12 350

aB = benzene, T = toluene, X = xylene. Constants kH and kN assumed equal for each parent aromatic.

Table 6.3: Percentages of peroxy radical (ARO2) from each parent aromatic that react via
the high-yield (R2) vs low-yield (R3) pathways. In parenthesis are the eventual contribu-
tions from each pathway to the total SOA from all aromatic species.

Parent Aromatic Pathway (R2) Pathway (R3)
RO2 fate (% of SOAarom) RO2 fate (% of SOAarom)

benzene 49% (36%) 51% (16%)
toluene 40% (29%) 60% (5%)
xylene 26% (10%) 74% (3%)
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Table 6.4: Global SOA budgets from aromatics and biogenics

Hydrocarbon SOA Production (Tg/yr) Burden (Tg)
aromatics 3.7 0.10
biogenics 30.3 0.81

isoprene 14.1 0.44
other 16.2 0.37

total 34.0 0.91
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(a) Benzene, 7.3 Tg/yr (b) Toluene, 7.3 Tg/yr 

(c) Xylene, 4.7 Tg/yr (d) Total,19.3 Tg/yr

0.0                3.3 x 1010          6.7 x 1010         1.0 x 1011    [molec C / cm2 / s]

Figure 6.1: Emissions of aromatic compounds.
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DJF MAM

JJA SNO

Figure 6.2: Seasonal distributions of the total surface level SOA from benzene, toluene and
xylene.
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(a) Yearly average,  surface level (b) July,  surface level

(c) February,  surface level (d) February,  790 hPa

Figure 6.3: Natural log of the ratio of concentrations of anthropogenic to biogenic SOA.
White areas are either a transition between anthropogenic and biogenic dominated regions
or areas where total concentrations were smaller than 1% of the maximum.
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(a) Total SOA ( anthropogenic + biogenic )

(b) Biogenic SOA

Figure 6.4: SOA export from the eastern United States during February from: (a) anthro-
pogenic and biogenic sources, (b) from biogenic sources only.
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Chapter 7

Conclusions

Inclusion of isoprene as a source of secondary organic aerosol (SOA) in a global model

has been shown to increase the global burden of SOA from all sources by more than a

factor of two. The isoprene source substantially increases SOA concentrations in the free

troposphere, because isoprene, and, more importantly, isoprene’s oxidation products, have

much greater concentrations at higher altitudes than other biogenic SOA precursors, high-

lighting the importance of semi-volatile organics for SOA formation. Despite considerable

uncertainty in model parameters, these results were demonstrated to be robust with re-

spect to increases in partitioning of non-isoprene oxidation products at higher altitudes and

increased wet removal of isoprene oxidation products. This additional source of SOA en-

hances production of SOA from other parent hydrocarbons by 17%, and leads to an overall

distribution of SOA that differs enough from previous predictions to warrant reevaluation

of the radiative effects of organic carbon aerosol.

Formation of SOA from anthropogenic sources in global models has also been assessed,

prompted by recent re-evaluation of the SOA yields from benzene, toluene and m-xylene

in low vs high-NOx environments. A simple mechanism has been presented for utilizing

standard empirical yield parameters from these experiments to describe the competition

between the low-NOx (high-yield) and high-NOx (low yield) pathways in global models of

SOA formation. Of all the aromatics considered, an important finding was that benzene,
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the least reactive of the aromatics with respect to initial reaction with OH, was predicted to

have the greatest overall SOA yield, as its long lifetime afforded it the chance to transport

away from anthropogenic source regions to areas where the [NOx]/[HO2] ratio was smaller,

favoring the high-yield pathways. Consideration of the high-yield, irreversible pathway also

lead to higher predicted concentrations of aromatic SOA during the summer in the eastern

United States and Europe than during the winter owing to seasonal cycling of NOx levels.

Though not a significant source on global scales, SOA formation from aromatic species

was estimated to comprise a substantial portion of SOA concentrations in select regions

and seasons. Overall, enhancements of SOA formation owing to isopene and aromatic

compounds still generally falls short of observed levels in a variety of environments. The

global modeling work presented here have highlighted the importance of further labora-

tory and modeling studies of the NOx dependent behavior of SOA yields from additional

hydrocarbons.

The feasibility of inverse modeling a multicomponent, size resolved aerosol evolving by

condensation / evaporation has been investigated. The adjoint method was applied to the

multicomponent aerosol dynamic equation in a box model (zero-dimensional) framework.

Both continuous and discrete formulations of the model (the forward equation) and the

adjoint were considered. A test example was studied in which the initial aerosol size-

composition distribution and the pure component vapor concentrations (i.e., vapor pres-

sures) were estimated based upon measurements of all species, or a subset of the species,

and the entire size distribution, or a portion of the size distribution. It was found that the

inverse model using the adjoint method could successfully retrieve initial size distributions

and pure component vapor concentrations even when only a subset of the species or a

portion of the size distribution was observed. The ability to resolve these parameters, of

course, depends upon the form of the initial estimates, the nature of the observations and

the length of the assimilation period.

We have presented the adjoint of the global chemical transport model GEOS-Chem,
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focusing on the chemical and thermodynamic relationships between sulfate – ammonium

– nitrate aerosols and their gas-phase precursors. The adjoint model was constructed

from a combination of manually and automatically derived discrete adjoint algorithms and

numerical solutions to continuous adjoint equations. Explicit inclusion of the processes

that govern secondary formation of inorganic aerosol has been shown to afford efficient

calculation of model sensitivities such as the dependence of sulfate and nitrate aerosol

concentrations on emissions of SOx, NOx, and NH3. The accuracy of the adjoint model has

been extensively verified by comparing adjoint to finite difference sensitivities, which were

shown to agree within acceptable tolerances. We have explored the robustness of these

results, noting how discontinuities in the advection routine hinder, but do not entirely

preclude, the use of such comparisons for validation of the adjoint model.

The potential for inverse modeling using the adjoint of GEOS-Chem was assessed first in

a data assimilation framework using simulated observations, demonstrating the feasibility

of exploiting gas- and aerosol-phase measurements for optimizing emission inventories of

aerosol precursors. Next, data from the IMPROVE network of aerosol sulfate and nitrate

measurements was used to evaluate sources of SOx, NOx and NH3 during January, 2002.

Optimized emissions inventories were found to substantially redistribute emissions of NH3,

with reductions in the Midwest and increases in the Southwest. Improved comparison

with observations of aerosol NH+
4 provided an independent measure of confidence in the

posterior emissions estimates. Sensitivities with respect to PM non-attainment metrics

were calculated for January, April, and July. The adjoint sensitivities clearly demonstrating

how reduction in SOx would be most effective during the summer, while NH3 controls would

be the most effective in April and January. As of yet, intercontinental influences were found

to minimally affect peak aerosol concentrations, but were not as negligible in terms of their

perturbation on background levels of aerosol concentrations.

Looking toward the future, recent deployment of remote sensing instruments affords

unprecedented opportunity for furthering our understanding of the chemical state of the
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troposphere. Instruments aboard several satellites have begun to provide detailed measure-

ments of CO, CH4 and O3 throughout the troposphere, in addition to column measure-

ments of species such as SO2 and NO2. Further estimates of tropospheric composition are

also being provided by remote sensing measurements of aerosol optical properties. What

constraints do combinations of such measurements place on the lifetimes and production

pathways of important gas and aerosol phase species? How does assimilating data from

one satellite affect the agreement with another, and how can we devise additional mea-

surement strategies that make maximal use of such combinations of information? Explicit

treatment of gas-phase chemistry, aerosol thermodynamics and secondary aerosol forma-

tion in a global transport model renders the combination of forward and inverse model

analysis presented in this work a powerful means for starting to address such questions.


