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[1] We present a new top-down approach that spatially constrains the amount of aerosol
emissions using satellite (Moderate Resolution Imaging Spectroradiometer (MODIS))
observed radiances with the adjoint of a chemistry transport model (GEOS-Chem). This
paper aims to demonstrate the approach through applying it to a case study that yields the
following emission estimates over China for April 2008: 1.73 Tg for SO2, 0.72 Tg for NH3,
1.38 Tg for NOx, 0.10 Tg for black carbon, and 0.18 Tg for organic carbon from
anthropogenic sources, which reflects, respectively, a reduction of 33.5%, 34.5%, 18.8%,
9.1%, and 15% in comparison to the prior bottom-up inventories of INTEX-B 2006. The
mineral dust emission from the online dust entrainment and mobilization module is reduced
by 56.4% of 19.02 to 8.30 Tg. Compared to the prior simulation, the posterior simulation
shows a much better agreement with the following independent measurements: aerosol
optical depth (AOD) measured by AERONET sun-spectrophotometers and retrieved from
Multi-angle Imaging SpectroRadiometer (MISR), atmospheric NO2 and SO2 columnar
amount retrieved from Ozone Monitoring Instrument (OMI), and in situ data of
sulfate-nitrate-ammonium and PM10 (particular matter with aerodynamic diameter less than
10 mm) mass concentrations over both anthropogenic pollution and dust source regions.
Assuming the bottom-up (prior) anthropogenic emissions are the best estimates for their
base year of 2006, the overwhelming reduction in the posterior (top-down) estimate
indicates less emission in April 2008 especially for the SO2 tracer in the central and eastern
parts of China, and/or an overestimation in the prior emission. The former is supported by
the AOD change detected by MODIS and MISR sensors, while the latter is likely the case
for NOx and NH3 emissions because no evidence shows that their atmospheric concentration
has declined over China. With the promising results shown in this study, continuous efforts
are needed toward a holistic and comprehensive inversion of emission using multisensor
remote sensing data (of trace gases and aerosols) for constraining aerosol primary and
precursor emissions at various temporal and spatial scales.

Citation: Xu, X., J. Wang, D. K. Henze, W. Qu, and M. Kopacz (2013), Constraints on aerosol sources using GEOS-
Chem adjoint and MODIS radiances, and evaluation with multisensor (OMI, MISR) data, J. Geophys. Res. Atmos., 118,
6396–6413, doi:10.1002/jgrd.50515.

1. Introduction

[2] Tropospheric aerosols play an important role in the
Earth’s energy budget and hydrological cycle by directly
scattering or absorbing solar radiation (hereafter direct effect)

and indirectly altering the cloud microphysical properties and
lifetime through serving as cloud condensation nuclei (here-
after indirect effect) [Haywood and Boucher, 2000]. The
Intergovernmental Panel on Climate Change [Forster et al.,
2007] reported direct and indirect aerosol radiative forcing
as �0.5 and�0.7Wm�2, respectively, both with uncertainty
of about 100%. Such large uncertainties are attributed not
only to a diversity of representations of aerosol microphysi-
cal and optical properties across models [Schulz et al.,
2006], but also to the uncertainty in the emissions of aerosol
particles and aerosol precursors (hereafter aerosol emissions)
from both natural and anthropogenic sources. Differences in
global aerosol emission estimates, ranging from 22% to over
200% depending on the species, were found among various
global chemistry transport models (CTMs) [Textor et al.,
2006], highlighting the need to further improve the
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quantifications of aerosol emissions. At regional scales, the
emission inventories have much larger uncertainty [Streets
et al., 2003] and often do not resolve the seasonal or monthly
variations, making it difficult to model regional climate, air
quality, and visibility. In addition, accurate and timely
knowledge of aerosol sources is required for use of air quality
models for studying impacts of aerosols on human health
[Pope et al., 2009].
[3] Current estimates of aerosol emissions are largely

based on the “bottom-up” method that integrates diverse
information such as fuel consumption in various industries
and corresponding measurements of emission rates for differ-
ent species [Streets et al., 2003], economic growth, and the
statistics of land use and fire-burned areas [van der Werf
et al., 2006]. While significant progress has been made
[Streets et al., 2006], the “bottom-up” approach has a number
of limitations. First, the emission inventory (EI) usually has a
temporal lag of at least 2 to 3 years, as time is needed to
aggregate information from different sources and format
them into the emission inventories that are suitable for use
in climate models. Second, the temporal resolution of the
current EI is usually on monthly to annual scale, which is
not sufficient to characterize the daily or diurnal variation
of emissions; the aerosol impact on radiative transfer and
the variation of cloud properties, however, is often strongly
dependent on the time of the day [Wang et al., 2006].
Third, the spatial resolutions of the bottom-up emission
inventories are usually limited by the availability of the
ground-based observations, which often lack the spatial cov-
erage for estimating emission in a uniformly fine resolution
for regional modeling of aerosol transport. Finally, bottom-
up emission inventories may miss important emission
sources that are not well documented including emissions
from wild fires, volcanic eruptions, and agricultural activi-
ties. All these limitations are amplified over the East Asia
region because the economic growth in China is so rapid that
information needed for bottom-up approach cannot be timely
and reliably documented.
[4] To complement information from bottom-up emissions,

remote sensing is increasingly used to better quantify aerosol
distributions. The satellite observations and/or products can
provide information important for the bottom-up estimate of
emissions. Examples include the fire products from
Moderate Resolution Imaging Spectroradiometer (MODIS),
Advanced Spaceborne Thermal Emission and Reflection
Radiometer, and Advanced Very High Resolution
Radiometer sensors that are widely used for characterizing
the biomass burning emissions [Borrego et al., 2008; van
der Werf et al., 2006, 2010; Reid et al., 2009]. Alternatively,
the satellite observed tracer abundance could be used to
constrain bottom-up estimates of aerosol emissions through
the inverse modeling; such method is referred to as a “top-
down” constraint. Although satellite-based aerosol retrievals
have less precision than in situ measurements, studies have
shown that they are able to quantify the atmospheric aerosol
loading and temporal variations with good agreement and
expected accuracy to the ground-based observations [Levy
et al., 2010; Remer et al., 2005]. Furthermore, the satellite-
based aerosol data, in contrast to the ground-based ones, have
much higher temporal resolution across the globe. For
instance, the MODIS sensor, aboard on NASA’s both Terra
and Aqua satellites, has a surface footprint size of ~1 km at

nadir and needs only 1 to 2 days to achieve global coverage.
In addition, the joint retrieval of aerosols from diverse satellite
sensors enhances the accuracy of satellite aerosol products
[Sinyuk et al., 2008], the potential of which has also been
shown in the air quality monitoring [Liu et al., 2005; Wang
et al., 2010].
[5] Different top-down techniques have been developed to

optimally estimate the emissions from satellite observations,
which include but are not limited to the following: (a) the
use of a scaling factor that is the ratio of observed tracer abun-
dances to the CTM-simulated counterparts [e.g., Lee et al.,
2011; Martin et al., 2003; Wang et al., 2006]; (b) the use
of the local sensitivity of change of tracer concentration
to the change of emission [e.g., Lamsal et al., 2011;
Walker et al., 2010]; (c) the analytical Bayesian inversion
method [e.g., Heald et al., 2004]; and (d) the adjoint of
CTM [e.g., Müller and Stavrakou, 2005; Henze et al., 2007,
2009; Dubovik et al., 2008; Kopacz et al., 2009, 2010; Wang
et al., 2012]. The first two methods are similar; both assume
a linear relationship between model-simulated aerosol abun-
dances and emissions. The analytical method is exact but com-
putationally expensive and thus can only constrain emission in
the domain-wise or over coarse spatial resolution [Kopacz
et al., 2009]. In contrast to the first three approaches, the ad-
joint approach is designed for exploiting the high density of
observations to constrain emission with high resolution
[Kopacz et al., 2009], as it is able to efficiently calculate gradi-
ents of the overall mismatch between observations and model
estimates with respect to large sets of parameters (i.e., emis-
sions resolved at each grid box) [Henze et al., 2007].
[6] Several studies have successfully analyzed sources of

traces gases using the top-down methods, including CO
sources from MOPITT sensor over the Asia [Heald et al.,
2004; Kopacz et al., 2009;] and over the globe [e.g.,
Stavrakou and Müller, 2006; Kopacz et al., 2010], CO2

surface flux from the TES sensor [Nassar et al., 2011], NOx

emissions from space-based column NO2 by several satellite
sensors [Lamsal et al., 2011; Lin et al., 2010; Martin et al.,
2003; Müller and Stavrakou, 2005], and SO2 from
SCIAMACHY and Ozone Monitoring Instrument (OMI)
sensors [Lee et al., 2011], etc. However, not all emissions of
trace gases can be fully constrained with their satellite-based
counterpart products, because some trace gases (e.g., SO2)
can react with other gases (e.g., NH3), to form either liquid
or solid aerosols (e.g., (NH4)2SO4). As a result, usingmeasure-
ments of trace gases alone can only provide partial constraints
on the emission of the corresponding trace gases.
[7] Ultimately, combined use of measurements of both

trace gases and aerosols should provide stronger constraint
(than each individual measurement alone) for the emission
of aerosols and their precursors including trace gases.
Unlike a given trace gas, aerosol has complex chemical com-
position. Aerosol optical depth (AOD), the only parameter
that current satellite remote sensing can provide and is well
validated, contains little information on aerosol composition.
Consequently, assumption of aerosol composition is often
made when using AOD to constrain aerosol models.
Examples from previous studies have focused on assimila-
tion of AOD to constrain model AOD [Wang et al., 2004;
Zhang et al., 2008; Benedetti et al., 2009], or to estimate
PM2.5 concentrations [van Donkelaar et al., 2006, 2008].
While valuable for forecasts or estimating distribution of
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aerosols, such studies do not provide direct constraints on
aerosol sources. In terms of constraining sources, a recent
study by Dubovik et al. [2008] constrained aerosol primary
sources in single-fine and single-coarse modes, respectively,
from MODIS retrieved fine and coarse mode 0.55 mm AOD
by inverting the GOCART aerosol transport model. To over-
come the inconsistency of aerosol single scattering properties
between CTM and aerosol retrieval algorithm that may com-
promise the use of satellite AOD to quantitatively invert
aerosol emissions, Weaver et al. [2007] suggested directly
assimilating the satellite observed radiance (such as from
MODIS) to improve the CTM (GOCART model) simulation
of aerosols. Improved retrieval of AOD and improved esti-
mate of surface PM concentration were also obtained by
Drury et al. [2008] over the U.S. andWang et al. [2010] over
China, when the GEOS-Chem-simulated aerosol single
scattering properties is used in the retrieval, allowing
MODIS radiance to directly constrain the GEOS-Chem
columnar mass of aerosols. Built upon this progress, Wang
et al. [2012] further used MODIS radiance to constrain dust
emissions over the East Asia.
[8] In this paper, we present a new attempt for the top-

down estimate of aerosol emissions through integration of
the satellite observation of reflectance and GEOS-Chem
Adjoint model. The technique is applied to improve esti-
mates of mineral dust and anthropogenic SO2, NH3, NOx,
black carbon (BC), and organic carbon (OC) emissions over
China for April 2008, during which ground-based PM10

(particulate matter with aerodynamic diameter of 10 mm or
less) data are available from a joint China-U.S. dust field
experiment [Huang et al., 2010]. This paper differs from
the past work in that: (a) satellite reflectance (in essence radi-
ance) is used to constrain the emission estimates of aerosol
particle and precursors, which eliminates the discrepancy of
aerosol optical properties between model simulated and
satellite retrieved AOD; (b) we use a suite of aerosol and

gas measurements from satellite sensors and ground-based
instruments to independently evaluate our results, and test
our hypothesis that temporal variation of AOD at different
locations, as characterized by satellite observations, can be
a strong constraint for species-specific source estimates if they
are combined with the model-based knowledge of the domi-
nant aerosol sources and the source-receptor relationship at
corresponding locations; and (c) combination of (a) and (b)
will provide the basis and a necessary step forward for future
research to simultaneously use both gas and AOD measure-
ments to constrain speciated aerosol emissions.
[9] We describe the top-down inversion scheme and its

key components (i.e., GEOS-Chem forward model and its
adjoint, and observational constraints) in section 2. The
top-down constraints on aerosol emissions over China for
the period of April 2008 are presented in section 3, and
evaluated in section 4. Interpretation and implications of
the results are discussed in section 5, and section 6 summa-
rizes this study.

2. Observational Constraints and
Inversion Methodology

[10] As shown in Figure 1, the top-down inversion approach
in this study integrates the MODIS radiance/reflectance with
the GEOS-Chem (section 2.1) and its adjoint model (section
2.2) to optimize aerosol emissions. First, similar to Wang
et al. [2010], we retrieve the atmospheric aerosol mass and
AOD through fitting the calculated radiance based on
GEOS-Chem aerosol composition and single optical proper-
ties to the MODIS cloud-free radiances (section 2.3).
Second, the retrieved AOD (hereafter retrieved MODIS
AOD) from the first step is used as an observational constraint
to optimize the aerosol emissions by inverting the GEOS-
Chem chemical transport model (section 2.4). The approach
aims to improve aerosol emission estimates that ultimately will
yield better agreement between model-simulated and satellite-
observed reflectances. Since the aerosol single scattering prop-
erties are exactly the same between the retrieval algorithm and
GEOS-Chem (as done in the first step), the top-down inversion
scheme essentially uses the MODIS radiances (in the form of
retrieved AOD) to scale the GEOS-Chem aerosol mass, which
in turn are used to optimally adjust the aerosol emissions. The
approach here is first demonstrated through a pseudo-observa-
tion experiment (section 2.5) before it is applied to real obser-
vations (section 3).

2.1. GEOS-Chem Model

[11] GEOS-Chem [Bey et al., 2001] (www.geos-chem.org)
is a global three-dimensional tropospheric chemical transport
model driven by assimilated meteorological observations from
the Goddard Earth Observing System (GEOS) of the NASA
GlobalModeling andAssimilation Office. The aerosol simula-
tion in GEOS-Chem includes state-of-science representations
of the major aerosol components: sulfate (SO4), nitrate
(NO3), ammonium (NH4), BC, and OC in both hydrophilic
and hydrophobic modes, mineral dust in four size bins, and
sea salt aerosols in both accumulation and coarse modes.
The model couples aerosol and gas-phase chemistry through
nitrate and ammonium partitioning, sulfur chemistry, second-
ary organic aerosol formation, and uptake of acidic gases by
sea salt and dust [Park et al., 2004]. Aerosol is removed by

Figure 1. Flowchart of the proposed top-down inversion
framework.
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dry and wet deposition. Dry deposition in GEOS-Chem
follows a resistance-in-series scheme [Wesely, 1989; Wang
et al., 1998] and accounts for gravitational settling [Seinfeld
and Pandis, 1998] and turbulent mixing of particles to the sur-
face [Zhang et al., 2001]. Aerosols are also removed through
wet scavenging in convective updrafts as well as the first-order
rainout and washout [Liu et al., 2001].
[12] GEOS-Chem uses many databases for anthropogenic

emissions [van Donkelaar et al., 2008] and biomass burning
emissions [van der Werf et al., 2010]. In the current study,
the annually anthropogenic emissions of SO2 and NOx are
from INTEX-B EI with the base year of 2006 [Zhang et al.,
2009b]. The monthly anthropogenic and biofuel emissions
of NH3 use the TRACE-P EI with the base year of 2000
[Streets et al., 2003]. The monthly anthropogenic fossil fuel
and biofuel OC/BC emissions are from Bond EI with base
year of 2000 [Bond et al., 2007]. The monthly biomass burn-
ing emission for SO2, NH3, NOx, OC, and BC use GFED2 EI
with the base year of 2007 [van der Werf et al., 2010]. The
mineral dust entrainment and deposition (DEAD) scheme
[Zender et al., 2003] that was modified to combine with the
GOCART topographic source function [Ginoux et al.,
2001; Fairlie et al., 2007] is used to simulate the prior emit-
ted dust fluxes (hereafter the modified DEAD scheme). We
run version 8-02-01 of GEOS-Chem for the full chemistry
simulation during the period of April 2008 with 2� � 2.5�
horizontal resolution and 47 vertical levels.
[13] AOD at wavelength l in each layer is calculated from

the sum of AODs of each component i assuming external
mixing

tl ¼
Xn

i¼1

3

4

mi Ql;i

ri reff ;i
¼

Xn

i¼1

mi bl;i

where n is the number of aerosol components, mi is aerosol
mass concentration of component i, Ql,i is extinction effi-
ciency factor at wavelength l calculated with Mie theory, ri
is aerosol mass density, reff,i is particle effective radius, and
bl;i ¼ 3

4
Ql;i

ri reff ;i
is the mass extinction efficiency. We account

for the hygroscopicity of aerosol particles, as all parameters
in the above equation are functions of relative humidity for
hydrophilic aerosol components. We use the updated aerosol
size distribution and refractive index from Drury et al.
[2010] and Wang et al. [2010] to calculate Ql,i and reff,i in
a Mie code.

2.2. GEOS-Chem Inverse Modeling

[14] The adjoint of the GEOS-Chem model was developed
specifically for inverse modeling of aerosol (or their precursors)
and gas emissions [Henze et al., 2007], and it is continuously im-
proved and maintained by the GEOS-Chem Adjoint and Data
Assimilation Working Group and its users (http://wiki.seas.
harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint). The
strength of the adjoint model is its ability to efficiently calculate
model sensitivities with respect to large sets of model parame-
ters, such as aerosol emissions at each grid box. These sensitiv-
ities can serve as the gradients needed for inverse modeling of
aerosol emissions. Recent studies have used the GEOS-Chem
adjoint with satellite observations to constrain sources of species
such as CO, CH4, and O3 [Kopacz et al., 2009, 2010; Jiang
et al., 2011;Wecht et al., 2012; Parrington et al., 2012], to diag-
nose source regions for long-range transport [Zhang et al.,

2009a; Kopacz et al., 2011; Henze et al., 2009], and to provide
guidance on future geostationary observations of surface air
quality [Zoogman et al., 2011]. More recently, the adjoint for
the GEOS-Chem dust emission and transport simulation has
been developed and applied to optimize dust emissions from
satellite observations over East Asia [Wang et al., 2012].
[15] In the GEOS-Chem inverse modeling framework,

aerosol emissions are adjusted using a vector of control
parameters s that are the logarithm of emission scaling fac-
tors for aerosol emissions: s= ln(E/Ea), where E and Ea

are updated and prior aerosol emission vectors, respectively.
The model response function J, or cost function, is formu-
lated following the four-dimensional variational (4D-Var)
technique:

J sð Þ ¼ 1

2

X

c2Ω
c sð Þ � cobs½ �TS�1

obs c sð Þ � cobs½ � þ g
1

2
s� sa½ �TS�1

a s� sa½ �

where c is the vector of simulated aerosol concentration in
four-dimensional spatial and temporal observation space Ω,
cobs is the vector of observed aerosol concentration, Sobs is
the observation error covariance matrix for cobs, g is a regu-
larization parameter, sa is prior control parameters, and Sa
is the error covariance matrix ofsa. Overall, the cost function
is a measure of specific model response, the minimum value
of which balances the objectives of minimizing model
mismatch of the observations while ensuring the specified
prior emissions remain within approximate range described
by Sa. The optimization seeks the optimal s that minimizes
the cost function J iteratively through a numerical quasi-
Newton algorithm, the L-BFGS-B algorithm [Byrd et al.,
1995], which requires the supplement of the cost function
and its gradient with respect to the emission scaling factors
calculated with GEOS-Chem adjoint model.

2.3. Observational Constraints from MODIS

[16] The observational constraints in this study are MODIS
reflectances from both Terra and Aqua satellites, from which
4D mass concentrations of six aerosol species (namely, SO4,
NO3, NH4, BC, OC, and dust) have been derived with the
GEOS-Chem model using the retrieval algorithm presented
by Wang et al. [2010]. Key to this algorithm are: (a) a data-
base of time-dependent local 0.65 and 2.1 mm surface reflec-
tance ratio that are derived from samples of the MODIS dark-
pixel reflectance data in low AOD conditions (i.e., dynamic
lower envelope method), (b) an assumption that the simu-
lated CTM aerosol is unbiased in composition and vertical
distribution shape but possibly largely biased in total mass
or optical depth, and (c) a linearized radiative transfer model
(VLIDORT [Spurr, 2006]) that computes the top-of-atmo-
sphere (TOA) reflectance and its Jacobian sensitivity to the
column AOD using the GEOS-Chem single aerosol optical
properties and the solar-earth-sensor geometries of the coin-
cident MODIS scene. With above (a), (b), and (c), Wang
et al. [2010] retrieved two unknowns (AOD at 0.65 mm and
surface reflectance at 2.13 mm) from two MODIS observed
quantities (0.65 and 2.13 mm TOA reflectance) by seeking
the minimum differences between GEOS-Chem and
MODIS reflectance. Based on (b), mass concentrations of in-
dividual aerosol species at each MODIS overpassed grid cell
are updated by applying the AOD scaling factors (ratios of
retrieved AOD to GEOS-Chem AOD at 0.65 mm) and are
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used as observational constraints for optimizing aerosol
emissions. According to the evaluation of the retrieved
AOD against AERONET AOD [Wang et al., 2010], we
found the uncertainty is generally less than 20%, which we
subsequently use to quantify the observation error in the
inverse modeling optimization.
[17] GEOS-Chem-simulated aerosol composition over

Asia is shown by multiple studies to have large underesti-
mation in BC, and equivalent or larger underestimation of
OC mass and overestimation of sulfate aerosol mass
[Heald et al., 2005; Fu et al., 2012], which suggests that
the mass fraction of highly absorbing (BC) and highly scat-
tering (OC and sulfate) fine-mode aerosols may have far less
biases (as compared to the relative bias in OC mass only).
Consequently, no significant biases are assumed for: (a)
the GEOS-Chem-simulated fraction of coarse-mode (dust)
aerosol mass, and (b) the GEOS-Chem-simulated aerosol
single scattering albedo. While (b) is important to ensure
an unbiased retrieval of AOD, (a) supports that the GEOS-
Chem-simulated dust AOD fraction is likely unbiased, both
of which support the use of AOD scale factors derived from
MODIS for constraining emission of coarse-mode dust and
fine-mode aerosols. Admittedly, any model bias in modeled
AOT fraction for each individual species can lead to a cor-
responding bias (of the same sign) in the adjoint modeling
results for individual emission. Quantification of such bias
is not possible for the present study owing to the lack of
aerosol composition data in China.

2.4. Selection of Emissions for Optimization and
Experiment Design

[18] The inversion scheme and the MODIS-based con-
straints, as described in the last three sections, are combined
to constrain the aerosol emissions over the Eastern Asia for
the period of April 2008. The modeled emission parameters
that most significantly influence the discrepancy between
simulation and observations are selected and spatially
constrained. Specifically, those model parameters (or control
parameters) represent six emitted tracers, as listed in Table 2,
which include emissions of SO2, NH3, and NOx, BC, and OC
from anthropogenic sources, and mineral dust. Bottom-up in-
ventories (and an online mobilization scheme for dust) are
used as prior estimates, corresponding magnitudes and geo-
graphic distributions of which are shown in Table 2 and
Figure 5, respectively. The temporal extent of the optimiza-
tion window is selected to be reconcilable with the temporal
variability of the bottom-up emission. We set optimization
window of a month for those trace gases and carbonaceous
emission tracers; while dust emission tracers are constrained
daily in a separate optimization run following approach by

Wang et al. [2012]. Both optimizations assimilate hourly
observations during the adjoint simulation.
[19] The 4D-Var technique in the optimization requires

background error covariance statistics for each control param-
eter.We specify the prior error for those emission tracers based
on characterized spatial and temporal averaged uncertainties
for those inventories [Zhang et al., 2009b; Bond et al., 2007;
Zender et al., 2003] but with larger values to reflect the possi-
bly large local aerosol emission uncertainties in the bottom-up
inventories. The uncertainty for SO2 emission estimate is be-
lieved to be smaller than those for NH3 and NOx, while uncer-
tainties of other tracers could be even larger [Textor et al.,
2006; Zhang et al., 2009b]. Therefore, we set relative error
of 50% for SO2, 100% for NH3 and NOx, 200% for BC, OC,
and dust sources. Lacking information to fully construct a
physically representative prior error covariance matrix, a regu-
larization parameter g is introduced in the cost function to bal-
ance the contribution of model error and source error, with a
value (here g=1000) selected using the L-curve technique
[Hansen, 1998]. Moreover, in order to test the impact of those
specified uncertainties on the optimization, we run a case with
an arbitrary prior error of 100% for all emission tracers and
present the results in Table 3.

2.5. Sensitivity Test With AOD Pseudo-Observations

[20] We first conduct a pseudo experiment to assess: (a) the
concept that temporal variations and geophysical location of
AOD, when interpreted with GEOS-Chem model, can yield
information about change regarding aerosol composition and
emissions, and (b) the sensitivity of the inversion results to
the assumption that GEOS-Chem-simulated relative composi-
tion or single scattering albedo of aerosol is unbiased. The
experiment has three steps: (a) GEOS-Chem simulation with
standard bottom-up EIs are first conducted to obtain prior
aerosol composition and 0.65 mm AOD for the period from 5
to 11 April 2008; (b) Pseudo-observations of AOD are created
by perturbing the following emissions (relative to bottom-up
EIs) in GEOS-Chem: +20% for SO2, NH3, and NOx, �40%
for dust, and zero for BC and OC (Table 1); (c) These
pseudo-observations of AOD in the dark surface region (red
box in Figure 2a), twice per day, respectively, at the Terra
and Aqua overpass daytime, are subsequently used as truth
to constrain emissions using the GEOS-Chem adjoint-
based inversion.
[21] The degree to which the inversion can correct for

species-specific errors in the emissions is assessed in these
sensitivity tests by comparing the optimized aerosol emis-
sions with the perturbed emissions in (b). Figure 2 shows
the distribution of relative changes in posterior emissions
from the sixth iteration with respect to the prior bottom-up
emissions for each species; the overall changes over the
China are shown in Table 1. By the sixth iteration, the cost
function reduced by 50%; further iterations yielded negligi-
ble additional decreases. The posterior emissions for SO2

and NH3, which increased by 14% from the prior, are close
to the “truth” (20%). NOx emissions were increased by 8%,
a smaller change than SO2 and NH3. Dust emissions re-
duced by 26% in the inversion, approaching the true values
of �40%. BC and OC emissions were increased by 2 and
3%, which are close to the truth of 0%.
[22] Overall, this sensitivity study demonstrates that the

inversion is capable of resolving the sign, spatial distribution,

Table 1. Prior, Posterior, and Perturbed Aerosol Emissions Over
China in the Pseudo Experiment

Tracers Eprior (Gg) Eposterior (Gg) Eposterior/Eprior (%) Eperturbed/Eprior (%)

SO2 520.8 592.0 113.7 120
NH3 219.3 249.2 113.7 120
NOx 338.8 365.3 107.8 120
BC 23.3 23.8 102.3 100
OC 39.7 41.1 103.4 100
Dust 2310.3 1697.1 73.7 60
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and the bulk of the true perturbations for the emissions of
each species. Meanwhile, we also note that the adjoint inver-
sion could transfer (somewhat marginal) errors from one
tracer to another, such as increases in BC and OC emission
as a result of significant underestimations in the prior SO2,
NH3, and NOx emissions, reflecting errors due to assump-
tions related to unbiased GEOS-Chem aerosol composition.
We can also assume that similar aliasing would occur in
attempts to distinguish the impacts of colocated precursor

emissions of scattering particles (e.g., SO2 and NOx from
power plants), although additional tests would be necessary
to assess whether or not differences in the timescales (and
thus transported length scales) over which these emissions
impact AOD would allow their sources to be separated.
Long-range transport of dust appears to have less influence
on the inversion because: (a) except dust, there are little
(other) emissions in dust source regions; (b) a sudden in-
crease of AOD in downwind regions can be interpreted by

Figure 2. Relative changes in posterior aerosol emissions from a priori in the pseudo-observation exper-
iment. Six panels are, respectively, for anthropogenic emissions of SO2, NH3, NOx, BC, and OC, and min-
eral dust from both natural and anthropogenic sources. The red box in Figure 2a indicates the region where
AOD observations are selected.

Figure 3. Comparison of the (a) prior and (b) posterior GEOS-Chem (GC) simulation of 0.65 mm AOD
with the AOD at the same wavelength retrieved from MODIS reflectance using GEOS-Chem aerosol op-
tical properties (c) averaged for the period of April 2008. Satellite retrievals with 10 km� 10 km at nadir
are aggregated to GEOS-Chem grid cells; and the model AOD are sampled coincidentally with those re-
trievals. Figure 3d and 3e, respectively, show the difference of prior and posterior simulated from the sat-
ellite retrieved AODs. The red box in Figure 3c indicates the region where AOD observations are selected.
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GEOS-Chem due to the dust transport, and this increase can
be used by GEOS-Chem adjoint as constraint to optimize the
dust emission.

3. Inversion Results

[23] With the feasibility of the approach demonstrated in
section 2, we apply the approach to MODIS radiance data
in April 2008. The emissions that result from each iteration
during the optimization enable GEOS-Chem to produce a
different set of AOD values that converge to the observa-
tional constraints. Figure 3a shows the geographic distribu-
tion of GEOS-Chem AOD at 0.65 mm, simulated with prior
aerosol emissions, averaged coincidently with retrieved
daily MODIS AOD (Figure 3c) during April 2008. While
the prior model simulation captures the overall spatial pat-
tern of AOD with larger values over eastern China, it has a

slight underestimation over the southwestern China but an
overwhelming overestimation elsewhere, when compared
to the retrieved AOD from MODIS radiance (Figure 3d).
The optimization is expected to adjust aerosol emissions
to reduce those differences. Following the experiment de-
sign described in section 2.4, we find that after six iterations
of the GEOS-Chem forward and adjoint runs, the cost func-
tion is reduced by about 60%, and further iterations yield
negligible reductions in the cost function. Therefore, the
aerosol emissions adjusted in iteration 6 are selected as
the final optimal results. As shown in Figures 3b and 3e,
the posterior GEOS-Chem AOD that are simulated with
the optimized aerosol emissions are in much better agree-
ment with their counterparts retrieved from MODIS reflec-
tance, which is also reflected by the cost function
reduction and confirms the effectiveness of the adjustment
in top-down emissions.

Figure 4. (a) Time series of the spatially averaged daily MODIS AOD retrievals (purple) for April 2008
over the Eastern China, compared by the prior (orange) and posterior (green) spatial averaged daily GEOS-
ChemAOD that are sampled in the MODIS AOD tempo-spatial space. (b) Time series of the expected daily
AOD adjustments (orange) that are the differences betweenMODIS AOD and the prior GEOS-ChemAOD
and their real adjustments (green) that are the differences of posterior from prior GEOS-Chem AOD. (c)
Time series of the prior (orange) and posterior (green) daily dust emissions over China for April 2008.
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[24] The convergence of the model simulation to the
MODIS AOD retrievals is also indicated in the AOD daily
variability. Figure 4a shows the daily variations of the AOD
spatially averaged for available MODIS retrievals (purple)

over the eastern China areas within the red box in Figure 3c,
and the coincidental GEOS-Chem simulation prior and
posterior to the aerosol emission optimization (orange and
green, receptively). The prior model produces overestimated

Figure 5. The prior (or bottom-up based, left column), optimized (or top-down constrained, middle
column) aerosol emissions over China for the period of April 2008, and their relative differences (right
column). Six rows from top to bottom are, respectively, for anthropogenic emissions of SO2, NH3, NOx,
BC, and OC, and mineral dust from both natural and anthropogenic sources.
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AODs for most days during the month. After top-down adjust-
ments to the aerosol emissions, such overestimation of the
AOD is reduced in total over the course of the month. As
shown in Figure 4b, the real changes of the modeled
daily AOD during the optimization (green bars), or equiva-
lently, the differences of the posterior from the prior are
consistent with the expected changes, i.e., the differences of
the MODIS retrievals from the prior model simulation. It is
noted that the posterior AODs have larger departure from the
observation than the prior on a few days. This reflects that
monthly scaled emissions are not perfectly capturing the daily
variation of emission.
[25] Emissions of SO2, NH3, NOx, BC, and OC from

anthropogenic sources are optimized monthly and rescaled
over each individual 2� by 2.5� grid cell of China for the
month of April 2008. The prior and posterior (optimized)
emissions of those tracers are, respectively, shown in left
and middle columns of Figure 5, in which the relative
changes of those emissions in the optimization are also in-
cluded in the right column. Overall, the optimization yields
an overwhelming reduction for all emission tracers, even
though some local increases are found. As expected, such ad-
justment in the constrained aerosol emissions is consistent
with the changes in GEOS-Chem AOD before and after opti-
mization, as aerosol loadings usually positively respond to
the aerosol emissions. Quantitatively, anthropogenic emis-
sions over China continent for the study period are changed
by �33.5% for SO2 from 1.302 to 0.866 Tg, �34.5% for
NH3 from 1.096 to 0.718 Tg, �18.8% for NOx from 1.694
to 1.375 Tg, �9.1% for BC from 0.11 to 0.10 Tg, and
�15.0% for OC from 0.205 to 0.175 Tg (Table 2). The
largest reduction occurs sharply in the central regions of the
Eastern China, corresponding to the region where the largest
AOD are adjusted to the MODIS retrievals. Small increases
of emitted anthropogenic sources of gases and carbonaceous
particles are found over the southwestern China, which
can be explained as the response for the underestimation
of AOD in the model simulation over these regions
(Figures 3a and 3d).
[26] The mineral dust emissions from both anthropogenic

and natural sources are optimized daily. The adjoint has no
leverage to increase the dust emissions over grid cells having
zero dust emission in the prior estimate identified by the
modified DEAD scheme. Thus, the posteriori dust source
region remains unshifted as shown in Figure 5 (bottom
panels), which is reasonable because the expansion or shrink-
age of desert regions is unlikely to extend beyond the grid
size (2� � 2.5�) of this study [Zender et al., 2003; Fairlie
et al., 2007]. The total amount of the optimized dust emis-
sions for April 2008 over China is 8.3 Tg, reduced by
56.4% from the modified DEAD module simulation of

19.02 Tg. Such reduction indicates an overestimation in the
prior emissions of dust, especially over Gobi deserts that
are located in the Northwestern China and the southern
Mongolia. Wang et al. [2012] presented a similar result, but
only for a dust event that occurred in the later portion of
our study time period. Figure 4c illustrates the time series
of the prior and optimized daily total dust emission. Two
sharp peaks of the dust emissions indicate the occurrences
of strong dust storms after April 15. Such large temporal var-
iation in the daily scale requires the optimization of dust
emission on the daily basis.
[27] An additional case with specified error of 100% for all

the anthropogenic emission tracers is conducted to examine
the sensitivity of those specified error to the optimization.
Table 3 shows the relative change in optimized emissions
for two different scenarios. Less than 0.5% difference in the
optimized emissions is found, which means the uncertainty
in prior emission could have much smaller impact on the
optimization than the observational constraints.

4. Results Evaluations with
Independent Measurements

[28] Because direct measurements of the aerosol emis-
sions are few over China, we assess the optimized sources
by comparing the GEOS-Chem posterior-simulated aerosol
mass concentrations and AOD with the independent obser-
vations from various sources. The evaluation datasets in-
clude: (a) AERONET AOD observations [Holben et al.,
1998] over nine sites; (b) Level 3 Multi-angle Imaging
SpectroRadiometer (MISR) daily AOD products [Kahn
et al., 2005]; (c) Level 3 SO2 [Krotkov et al., 2006; Lee
et al., 2009] and Level 2 NO2 [Bucsela et al., 2006]
retrievals from the OMI; (d) surface mass concentration of
sulfate-nitrate-ammonium (SNA) aerosol particles over
Qingdao, China; and (e) surface PM10 over two sites close
to dust source region [Ge et al., 2010].

Table 2. List of Prior and Posterior Aerosol Emissions in China During April 2008

Tracer

Bottom-Up Top-Down

Eprior (Tg mon�1) A Priori Error (%) Base Year Temporal Variability Inventory Optimizing Window Eposterior (Tg mon�1) ΔE (%)

SO2 2.60 50 2006 Annual INTEX-B 1month 1.73 �33.5
NH3 1.10 100 2000 Annual INTEX-B 1month 0.72 �34.5
NOx 1.69 100 2006 Monthly INTEX-B 1month 1.38 �18.8
BC 0.11 200 2000 Monthly Bond-2007 1month 0.10 �9.1
OC 0.21 200 2000 Monthly Bond-2007 1month 0.18 �15.0
Dust 19.02 200 Online 1 hour DEAD 1day 8.30 �56.4

Table 3. Test of the Sensitivity of Optimization With Respect to
Prescribed A Priori Error

Tracer

Case 1 Case 2

A Priori Error (%) ΔE (%) A Priori Error (%) ΔE (%)

SO2 50 �33.5 100 �33.7
NH3 100 �34.5 100 �34.4
NOx 100 �18.8 100 �18.8
BC 200 �9.1 100 �9.1
OC 200 �15.0 100 �15.0
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4.1. Comparison With AERONET AOD

[29] We first evaluate the prior and posteriori GEOS-Chem
0.55mm AOD against the AERONET AOD at 0.55mm that
are interpolated from AODs at 0.44 and 0.67mm based on
the Angstrom exponent. Three-hour averaged values of avail-
able AERONET AOD, centered by the model output time, are
used to compare with the model AOD over the grid cells locat-
ing the AERONET sites. The scatterplots shown in Figure 6
are the comparisons for nine stations over China, South
Korea, and Japan representing different aerosol types. The first
three stations, i.e., (a) Zhangye, (b) SACOL, and (c) Jingtai,
which are located over rural regions in the south boundary of
Gobi deserts and have little influence from anthropogenic
emissions, are representative sites for dust aerosol [Ge et al.,
2010]. The next three sites, (d) Beijing, (e) Xinglong, and (f)
Heifei, are located in anthropogenic source regions. The last
three sites, (g) Noto, (h) Shirahama, and (i) Gwangju_K, are
located over Japan and South Korea, the downwind regions
of China emissions. Those last six stations are affected not
only by the local anthropogenic emissions but also by the
long-range transported aerosols from the upwind regions.

Indeed, those three categories of stations are, respectively, lo-
cated in the upwind, central, and downwind of regions having
the observational constraints.
[30] The prior GEOS-Chem simulation (shown in the red

scatter panels) overestimates the AERONET AOD for all
the sites except Beijing. The low bias of model AOD at
Beijing is likely owing to the model coarse resolution,
which fails to resolve heavy local urban pollution. The geo-
graphic area of urban Beijing is about 1300 km2 (http://en.
wikipedia.org/wiki/Beijing), less than 3% of the area of a
GEOS-Chem grid cell. Thus, the local pollution signal is
smeared in the model grid box. Moreover, Beijing and
Xinglong are in the same model grid cell, but AERONET
AOD over Xinglong is much smaller than that over
Beijing site (as later shown as circles on the maps of
Figures 7a–c). As Beijing site is difficult to represent in
the GEOS-Chem at 2� � 2.5� resolution, we exclude
Beijing site in our further analysis. GEOS-Chem AOD from
the posterior aerosol emissions are in more agreement with
the AERONET AOD (shown in the green scatter panels),
as indicated by reduced bias and root-mean-square-error

Figure 6. (a – i) Scatterplots of GEOS-Chem AOD versus AERONET AOD at 0.55 mm prior (red scat-
ters) and posterior (green scatters) to the aerosol emission optimization over nine stations. AERONET
AODs are 3 h averages following the GEOS-Chem output frequency. (j) The overall comparison for eight
AERONET sites excluding Beijing. Also shown are the number of valid sampled pairs (n), correlation co-
efficients (R), bias, and root-mean-square-error (RMSE).
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(RMSE) over all the other sites and increased correlation co-
efficients (R) for most sites. The overall comparison
(Figure 6j) shows the correlation coefficient increases from
0.54 to 0.63, and the bias (RMSE) declines from 0.13 (0.27)
to 0.03 (0.07).

4.2. Comparison With MISR AOD

[31] We regrid the Level 3 daily MISR 0.55 mm AOD
from the 0.5� � 0.5� resolution to GEOS-Chem 2� � 2.5�
grid cells and take monthly average for April 2008, the
geographic distribution of which is shown in Figure 7c.
High AOD values are found over the eastern China and
the northwestern desert regions, which are associated to
the anthropogenic pollution primarily from the industry
and wind-blown mineral dust, respectively. The monthly
sun-photometer AOD values at the same wavelength
show good agreements with the MISR AOD over all the
AERONET sites except Beijing where the significant local
urban pollution exists.
[32] The monthly averages of prior and posterior GEOS-

Chem 0.55 mm AOD mapped in Figures 7a–b are sampled
coincidently to the MISR AOD. A comparison with the
MISR AOD shows GEOS-Chem simulation with prior
aerosol emissions overestimates AOD over both the desert
and industrial regions. The posterior simulation is slightly
more in agreement with MISR AOD. To facilitate the
comparison of model with MISR AOD, we also include,
as Figure 7d, the scatterplots of the AOD for each
GEOS-Chem grid cell with values larger than 0.2 by con-
sidering the larger retrieval uncertainty in the low AOD

conditions [Kahn et al., 2005]. While the correlation coef-
ficients remain about the same, both absolute bias and
RMSE are reduced about 30%.

4.3. Comparisons With OMI Column SO2 and NO2

[33] The improvement in the optimized aerosol emissions
is also exhibited in the comparison of simulated trace gases
to the satellite retrievals from OMI. The GEOS-Chem SO2

simulations are assessed with OMI Level 3 daily products
of planetary boundary layer (PBL) SO2 column gridded
with 0.25� � 0.25� resolution. We average the OMI SO2

column retrievals into GEOS-Chem 2� � 2.5� grid cells
and take the monthly average for comparison, which are
shown in Figure 8c. Figures 8a and 7b show model prior
and posterior SO2 column that are coincidentally sampled
with OMI retrievals. Figure 8d illustrates the quantitative
analysis for OMI SO2 retrievals larger than 1� 1016 molec
cm�2. With the optimized emission estimates, the bias and
RMSE are reduced from 0.81 and 0.61 to –0.28 and 0.38
molec cm�2, respectively, along with an increase of correla-
tion coefficient from 0.68 to 0.73.
[34] We evaluate the model simulation of NO2 with

OMI Level 2 products of NO2 tropospheric column over
0.25� � 0.25� grid cells. Recent studies suggested that
the uncertainty in OMI NO2 tropospheric column re-
trievals is ~40% with an ~15% positive systematical bias
[Boersma et al., 2008; Celarier et al., 2008]. Following
Lin et al. [2010], we apply a factor of 0.85 to OMI NO2

retrievals in our comparison to correct the bias. Figure 9
shows the comparison of GEOS-Chem NO2 columns with

Figure 7. Comparison of the prior and posterior GEOS-Chem simulation of 0.55mmAODwith the Level 3
MISR 0.55mm AOD for the period April 2008. (a) The prior GEOS-Chem 0.55mm AOD that are sampled
coincidentally withMISR AODs for the period of April 2008. Also overlaid circles are the monthly AOD av-
erages at 0.55mm observed from the nine AEORNET sites shown in Figure 5. Figure 7(b) Same as Figure 7a
but for the monthly average of posterior GEOS-Chem AOD. (c) Monthly average of the Level 3 daily MISR
0.55mmAOD. (d) Scatterplot of the GEOS-ChemAOD versus the MISRAOD before (red scatters) and after
optimization (green scatters), in which each point indicates an AOD pair over a model grid cell with value
over 0.2. Also shown are the statistics including number of sampled pairs (n), correlation coefficient (R), bias
and root-mean-square-error (RMSE). Comparisons of the monthly GEOS-Chem AOD versus AERONET
AOD are also included as the black circles; each circle indicates an AOD pair over an individual site.
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regridded OMI NO2 retrievals. Similarly, we also perform
the quantitative analysis, as in Figure 9d, for OMI NO2

column retrievals larger than 3.0� 1015 molec cm�2.
While the correlation coefficient remains about the same,
the bias (RMSE) is reduced from 1.50 (1.65) to 0.03
(1.51) (units: 1015 molec cm�2) after constraining
aerosol emissions.

4.4. Comparisons With Near-Surface Aerosol
Mass Concentrations

[35] The accuracy of the SNA aerosol simulation is in part
determined by the representation of the emissions of SO2 and
NOx and NH3, and hence GEOS-Chem simulations with
constrained emissions should provide overall an improved
simulation of SNA. Figure 10 shows the comparison of daily

Figure 8. Same as Figure 7 but for comparison of the GEOS-Chem SO2 simulation with OMI column
SO2 retrievals for the period of April 2008. The OMI planetary boundary layer (PBL) column SO2 from
the Level 3 daily products with 0.25� � 0.25� resolutions are aggregated into GEOS-Chem grid cells.

Figure 9. Same as Figure 7 but for comparison of the GEOS-Chem NO2 simulation with OMI column
NO2 retrievals for the period of April 2008. The OMI tropospheric column NO2 from Level 2 daily prod-
ucts with 0.25� � 0.25� resolutions are aggregated into GEOS-Chem grid cells.
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near-surface SNAmass concentration from the prior and pos-
terior GEOS-Chem simulations with measurements over
Qingdao (120.34�E, 36.06�N), China. The error bars for the
GEOS-Chem curves indicate the diurnal standard deviation.
An overestimation in the prior model surface SNA simula-
tions is found when comparing with observed counterparts,
which shows a bias of 14.28 mgm�3, RMSE of 21.84 mg
m�3, and correlation coefficient of 0.46. Such bias is signifi-
cantly reduced to 0.34 mgm�3 in the simulation with top-
down constrained emissions, along with a 50% decrease in
RMSE and a 28% increase in correlation coefficient.
[36] The mass concentration over or near the dust source

regions where the anthropogenic emissions are small is
most sensitive to the dust mass loading, and thus can be an
indicator of the dust emissions in the first order. Figure 11

shows the prior and posterior GEOS-Chem surface PM10

mass concentration compared with the ground-based mea-
surements from the 2008 China-U.S. joint field experiment
[Ge et al., 2010] over two of the AERONET sites in
Figures 6a and 6b, i.e., Zhangye (100.28�E, 39.08�N) and
SACOL (204.14�E, 35.95�N), which are located on the
downwind boundaries of the Gobi deserts. Based on the
availability of the measurements data, comparisons are for
the period of 15 – 30 April 2008. The measured surface
PM10 shows a strong daily variation. A strong dust event
during 18 – 20 April can be found over both stations with
PM10 exceeding 400 mgm�3. Two additional dust events
with PM10 over 400 mgm�3 occurred during 24 – 26 and
29 – 30 April. The prior simulation generally captures the
daily variation pattern but significantly overestimates the
surface PM10 for those dust events; prior simulated PM10

reaches up to around 3000 mgm�3 over Zhangye and
1000 mgm�3 over SACOL for the dust events during 18 –
20 and 24 – 26 April 2008. The two-week averages show
the prior simulation overestimates PM10 a factor of 2 over
Zhangye and a factor of 1 over SACOL in the magnitude.
After optimization, the relative biases in the PM10 simula-
tion are reduced to about 25%. Moreover, the comparison
of the time series of the PM10 also shows that the model
value with top-down emissions has much better agreement
with the measurements in terms of temporal variation.

Figure 10. Comparison of the GEOS-Chem surface mass
concentration of sulfate-nitrate-ammonium (SNA) aerosols
with ground-based observations over Qingdao (120.34�E,
36.06�N), China. Discontinuity in time series is due to miss-
ing or quality filtered observations. Circles indicate the
change of AOD values observed by AERONET stations.

Figure 11. Time serial plot of the GEOS-Chem-simulated
surface PM10 concentrations by prior (red) and posterior
(red) aerosol emissions compared with the in situ measured
PM10 (black) over (a) Zhangye and (b) SACOL stations
for 15 – 30 April 2008; also shown are the average values
over same the period. Discontinuity in time series is due to
missing or quality filtered observations.

Figure 12. Taylor diagram for the model evaluations before
(squares) and after (circles) optimization when comparing
against (1) AERONET AOD at 0.55mm, (2) MISR 0.55mm
AOD, (3) OMI column SO2, (4) OMI column NO2, (5) sur-
face SNA concentrations at Qingdao site, and (6) surface
PM10 concentrations measured at Zhangye and SACOL sites.
The color coded on each point indicates the relative bias. It
should be noted that the ratio of standard deviations and corre-
lation coefficient between prior GEOS-Chem-simulated and
measured surface PM10 over Zhangye and SACOL is 6.5
and 0.45, which makes the point number 6 for the prior simu-
lation far beyond the range of this Taylor diagram.
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4.5. Evaluation Summary

[37] A summary of evaluations of the prior and posterior
model simulations is illustrated in Figure 12 using a Taylor
diagram [Taylor, 2001]. Taylor diagram provides a statistical
summary of the model performance in terms of correlation
coefficients (R), centralized root-mean-square difference
(RMSD), and ratio of standard deviations between model and
observations (or normalized standard deviation, NSD). The lat-
ter two quantities reflect how well model captures the temporal
or/and spatial variation of observations. In the Taylor diagram,
cosine of polar angles represents R, and radius (dotted-contour)
indicates NSD. Thus, the reference point (black circle) where R
and NSD are unity represents observations, and the distance
(dashed-contour) of certain point from which indicates the
RMSD. Considering that the Taylor diagram itself is not able
to show the statistical bias, we use different colors for each data
point to indicate their respective relative biases. The data points
labeled from 1 to 6 indicate comparisons between model and

observations of (a) AERONET AOD at 0.55 mm, (b) MISR
0.55 mm AOD, (c) OMI retrievals of SO2 Column, (d) OMI
retrievals of NO2 Column, (e) surface concentration of SNA
over Qingdao, and (f) surface concentration of PM10 over
Zhangye and SACOL, respectively. Square and circles repre-
sent the evaluations for prior and posterior GEOS-Chem simu-
lations, respectively. It should be noted that the NSD between
prior GEOS-Chem-simulated and measured surface PM10 dur-
ing the China-U.S. joint field campaign is about 6.5 (and R of
0.45) that are significantly beyond the range of this Taylor dia-
gram. Consequently, the square point of number 6 is not shown
in the diagram. It is clear from the Taylor diagram that the cir-
cular points (posterior simulation) are generally closer than the
square points (prior simulation) to the reference point and to
the unity curve of NSD, and have remarkably decreased bias.
Evaluations with all those independent observations indicate a
notable improvement in themodel simulation, reflecting a better
estimate of aerosol emissions.

Figure 13. Change of April monthly 0.55 mm AOD from 2006 to 2008 from (a) MODIS and (b) MISR
Level 3 daily products.

Table 4. Comparisons for Annually (Tg yr�1) and/or for April Only (Tg mon�1) Estimates of Chinese Aerosol Emissions During 2006
and 2008

2006 2008

Trace Inventories Annual April Annual April

SO2

INTEX-B, Zhang et al. 2009b 31.02 2.37
China MEP-2008 25.89 23.21
Lu et al. 2010 33.2 31.3
This work 2.60 22.69a 1.73

NH3

TRACE-P, Streets et al. 2003 13.6 1.10
Huang et al. 2012 9.8 0.71
This work 1.10 8.91a 0.72

NOx

INTEX-B, Zhang et al. 2009b 20.83 1.63
Lin et al. 2010 22.34
This work 1.69 17.60 1.38

BC

INTEX-B, Zhang et al. 2009b 1.81 0.12
Qin and Xie, 2012 1.55 1.61
Lu et al. 2011 1.63 1.68
Zhao et al. 2013 1.6 1.6
This work 0.11 1.51a 0.10

OC

INTEX-B, Zhang et al. 2009b 3.22 0.19
Lu et al. 2011 3.42 3.37
Zhao et al. 2013 2.9 2.8
This work 0.21 2.92a 0.18

aAnnual top-down estimates (Tg yr�1) based on the monthly variation of the INTEXT-B inventory.
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5. Implication of Results

[38] Interpretation of our inversion results can be from two
different perspectives. First, if assuming that bottom-up
anthropogenic emissions are the best estimates for their base
years (mostly 2006), the reduction in the top-down emissions
over China for April 2008 may indicate a decrease of emissions
for April from 2006 to 2008. This conjecture is supported by the
finding of significant decrease of AOD from 2006 to 2008 over
the eastern China, shown both in the MODIS and MISR Level
3 gridded products (Figure 13), if we assume that the impact on
AOD of meteorological differences between the two years is
smaller than the differences in emissions. Furthermore, a slight
increase of AOD over the Southeastern China (Figure 13) is
also found to be consistent to the increase in the top-down
emission estimates (Figure 5). In contrast to the first interpreta-
tion, the second one is that the difference of actual emissions
between 2008 and their base year (2006) is smaller than the
magnitude of adjustments in the optimization, and hence our
results imply that the prior bottom-up emissions might be artifi-
cially overestimated. We further elucidate those two points
belowwith a literature survey (data are summarized in Table 4).

5.1. SO2

[39] The INTEX-B inventory by Zhang et al. [2009b] reported
an annual production of 31.02Tg from anthropogenic sources
over China. A decrease trend of China SO2 emissions from
2006 to 2008 has been found based on bottom-up estimates by
Lu et al. [2010] from 33.2 to 31.3 (~5.8% decrease) Tg yr�1

and byChinaMinistry of Environmental Protection [2009] (here-
after referred to as MEP-2008) from 25.9 to 23.2Tg yr�1

(~10.4% decrease). With OMI SO2 retrievals, Lu et al. [2010]
found the dramatic reduction of SO2 emissions over the northern
China for the same period. Similar to this study, Lu et al. [2010]
also presented that the reductions are more significant over
the Eastern China. They attribute some reduction to the
widespread installation of flue-gas desulfurization devices
in power plants, which is enforced by the China government
since 2006. Evidences for the reduction trend of SO2 emis-
sion also include the reduction of SO2 column from 2006
observed by both SCIAMACHY and OMI satellite sensors
[Lu et al., 2011]. With the same SCIAMACHY and OMI
SO2 retrievals, Lee et al. [2011] obtained top-down
estimates of China SO2 emissions, which are lower by 50%
for SCIAMACHY and 30% for OMI than the INTEX-B
inventory. Thus, the reduction of 33.5% in the top-down
China SO2 emissions of this work can be interpreted by the
joint contribution of a decrease trend and a possible
overestimation in INTEX-B bottom-up inventory.

5.2. NH3

[40] The NH3 emissions over China have not changed much
since 2000, as confirmed by the REAS inventory [Ohara
et al., 2007]. Our study shows an overall decrease of 34.5%
in the optimized from the TRACE-P 2000 inventory [Streets
et al., 2003], which may indicate an overestimation in the
TRACE-P inventory. As shown in Table 4, the total amount
of the constrained NH3 emission (0.72Tg Mon�1) for April
2008 is quite close to a recent bottom-up estimates (0.71Tg
Mon�1) by Huang et al. [2012]. Huang et al. [2012] also
pointed out that the TRACE-P 2000 inventory significantly
overestimates the NH3 emission by applying an overestimated
emission factor across the whole country.

5.3. NOx

[41] Lin et al. [2010] constrained Chinese anthropogenic
emissions of NOx July 2008 with tropospheric NO2 retrievals
from GOME-2 and OMI instruments. They found the top-
down emissions are (10 – 15%) lower than the a priori near
Beijing (in agreement with results from Mijling et al.
[2009]), in the northeastern provinces and along the east
coast; yet they exceed the a priori over many inland regions.
Overall, they presented a best top-down estimate of annual
NOx production is 6.8 Tg N, or 22.34 Tg NO2, which is
slightly higher than a priori. While the change in NOx emis-
sion over China remains a controversy, the 18.8% difference
of posterior NOx emissions from the bottom-up still lies in the
�31% uncertainty of the inventory [Zhang et al., 2009b]. We
argue bottom-up NOx estimate from INTEX-B inventory
could have a possible overestimation.

5.4. BC and OC
[42] Major emitting sectors of BC and OC are coal and bio-

fuel combustion by industry, residential, and transportation
activities. The trend of BC and OC emissions in China during
recent years are controlled by the balance between decrease
in emission factor, which pertains to improved technology,
and increase in coal and fuel consumptions. According to
MEP-2008 [Ministry of Environmental Protection, 2009],
the annual smoke emission in China decreased by about
17.2% from 2006 to 2008. While BC and OC emissions esti-
mated by Lu et al. [2011] and Zhao et al. [2013] remain al-
most same between 2006 and 2008, Qin and Xie [2012]
reported a 3.8% increase. The top-down BC emission is
0.10 Tg mon�1 (or 1.509 Tg yr�1 based on the monthly var-
iation in INTEX-B inventory), which is smaller than that in
INTEX-B, but close to estimates of 1.61 Tg yr�1 by Qin
and Xie [2012] and1.68 Tg yr�1 by Lu et al. [2011]. In terms
of China OC emission estimates for 2008, Lu et al. [2011]
suggested a slightly larger value (3.37 Tg yr�1), while Zhao
et al. [2013] indicated a smaller value (2.8 Tg yr�1) than
INTEX-B (3.22 Tg yr�1). Our OC emission estimate
(0.18 Tg mon�1 or 2.92 Tg yr�1) is within their reported
range. It is noted that the uncertainty for OC emissions is
reported to be very large: �258% in INTEX-B [Zhang
et al., 2009b], �43% to 80% by Lu et al. [2011], and
�42% to 114% in a recent study by Zhao et al. [2013].

5.5. Mineral Dust
[43] The ~50% reduction in the posterior dust emission

estimates suggests the use of DEAD mobilization scheme with
GOCART source function possibly tends to produce a system-
atic positive bias over the Taklimakan and Gobi deserts regions
over the northwestern China, even it works reasonably for the
United States [Fairlie et al., 2007]. Similar results have been
also found in top-down dust emission estimates by MODIS
aerosol retrievals [Wang et al., 2012] and constrained dust
emissions by surface PM measurements [Ku and Park, 2011].
Such overestimation by the dust mobilization scheme is also
reflected through comparison GEOS-Chem AOD (as in
Figure 6) and surface PM10 concentration (as in Figure 11)
with in situ measurements near the dust source regions.

6. Discussions and Summary

[44] This study presents a two-stage inversion scheme to
explore the capacity of using satellite radiance for inversion
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of species-specific aerosol emissions. First, we prepare the
observational constraints of AOD using an advanced aerosol
retrieval algorithm, which integrates the GEOS-Chem aerosol
optical properties to the MODIS observed radiance [Wang
et al., 2010]. Second, the adjoint of the GEOS-Chem chemical
transport model is applied to statistically optimize aerosol
emission estimates using these AOD retrievals. Thus, the
MODIS radiances are essentially used to optimize the
estimates of the emitted aerosol tracers and precursors. We
illustrate our concept first with an idealized numerical experi-
ment and subsequently demonstrate the feasibility and practi-
cability of the proposed scheme by applying it to optimize
aerosol emission inventories over China during April 2008.
Emissions of SO2, NH3, NOx, BC, and OC from anthropo-
genic sources, which significantly influence the aerosol simu-
lation, are selected to be constrained at a spatial resolution of
2� � 2.5� and a monthly temporal resolution. Mineral dust
production from combined natural and disturbed sources is
optimized at the same spatial resolution but with a daily
temporal resolution. Independent observations from both sat-
ellite remote sensing and ground-based observations are used
to assess the inversion results through their comparisons with
relevant GEOS-Chem simulations using prior and posterior
emission estimates.
[45] The inversion yields posterior best estimates of

1.73 Tg for SO2, 0.72 Tg for NH3, 1.38 Tg for NOx, 0.10 Tg
for BC, and 0.18 for OC from anthropogenic sources, and
8.3 Tg for combined natural and disturbed mineral dust.
These show notable decreases from their counterparts in the
bottom-up inventories in amount (or percentage decrease):
0.87 Tg (33.5%) for SO2, 0.38 Tg (34.5%) for NH3, 0.32 Tg
(18.8%) for NOx, 0.01 Tg (9.1%) for BC, and 0.03 Tg
(15.0%) for OC. The total amount of the mineral dust emis-
sion is reduced by 56.4% from 19.02 Tg simulated by the
DEAD mobilization module. The distribution of emission
scaling factors exhibits strong spatial variation for those an-
thropogenic-emitted tracers and considerable temporal varia-
tion for mineral dust. The use of top-down constrained
emissions remarkably reduces the discrepancy between
GEOS-Chem simulation and observational AOD constraints,
in both spatial and temporal variation features.
[46] Resulting posterior estimates of emissions are evalu-

ated with independent AOD observations from surface sites
(AERONET) and satellite (MISR), SO2 and NO2 column
retrievals from satellite (OMI), and surface SNA and PM10

concentrations from ground-based measurements. While the
prior simulation over China generally shows overestimation,
the use of posterior emissions significantly enhances the
consistency between simulations and those independent
observations. The statistical analysis of those comprehensive
comparisons summarized in the Taylor diagram shows an
overall reduced bias and RMS difference along with
increased correlation coefficient, further confirming the
improvements in the posterior simulation and the effective-
ness of the presented top-down scheme.
[47] We attribute the differences between prior and pos-

terior aerosol emissions to the change of emitted amount
from the base year of those bottom-up inventories to the
study period and/or the under/overestimations in those
inventories. Through comparisons with emissions over
China reported by recent studies, we find that our inver-
sion results are consistent with following finding: (a)

anthropogenic SO2 emissions over China have been de-
creased by 5 – 10% from 2006 to 2008; (b) anthropogenic
BC/OC emissions may be slightly reduced; (c) anthropo-
genic emissions of SO2 and NOx reported in the INTEX-
B and NH3 from TRACE-P inventories could have been
artificially overestimated, (d) the DEAD mobilization
scheme combined with GOCART dust source function,
even works well over the United States [Fairlie et al.,
2007], seems to simulate mineral dust surface fluxes with
a systematic positive bias.
[48] As a first attempt to invert species-specific emissions

with satellite radiance, this study has a number of limitations.
Those limitations may impact the uncertainty in posterior
emissions, which is supposed to be smaller than uncertainty
characterizing either a priori or observational constraints
[Rodgers, 2000]. While quantification of these is beyond
the demonstrative purposes of this paper, we present a qual-
itative discussion as follows. First, in the stage of aerosol
retrieval, we presume aerosol composition is unbiased and
contains errors only in the total amount. As the model inevi-
tably has bias associating aerosol types, improvement of this
assumption over regional to global scale can be obtained
from innovative satellite measurements. Indeed, the radiance
observations have potential information on the aerosol com-
position. For example, the spectral behavior of the radiance is
used to discriminate smoke from mineral dust particles [King
et al., 1999;Kaufman et al., 2002]. Radiances measured from
multiviewing angle are sensitive to aerosol particle size and
nonsphericity [Kahn et al., 2005]. Temporal variation and
geographical location can also yield information about aero-
sol composition. For example, increase of AOD in semi-arid
region may reflect the increase of dust, while change of AOD
in the Eastern Asia may reflect the increase of industrial
emission. Hence, as shown in this study, a combined use of
the model-based knowledge of the dominant aerosol sources
and the source-receptor relationship together with the satel-
lite-based temporal variation of AOD at different locations
can be a strong constraint for species-specific source esti-
mates. Second, this study also assumes the sole cause of the
radiance difference (or the AOD difference) is due to the
uncertainty in aerosol emissions. However, other processes
can contribute to the difference, e.g., aerosol transport, wet/
dry deposition, diurnal variation, prescribed aerosol physical
and optical properties, and errors in the meteorological fields
and radiative transfer calculation, etc. The third assumption is
related to the error covariance matrices that are specified as
diagonal with errors based upon literature (but that them-
selves may have uncertainty). To properly address these is-
sues in future, a logical next step would be to assimilate
multiple-spectral and/or multi-angle satellite radiance to the
CTM. Furthermore, errors in the processes including emis-
sion, transport, and deposition and radiative transfer should
be reasonably characterized and included in the optimization.
[49] The top-down inversion scheme using GEOS-Chem

adjoint inverse modeling is a powerful tool to include observa-
tional constraints from different platforms for timely updating
aerosol emissions. There is also a need of using combined
tracer gas and aerosol measurements to simultaneously con-
strain the aerosol emissions and gas precursors. Encouraging
results presented in this study reveal the potential of using
aerosol observations from MODIS and MISR, SO2 and NO2

from OMI and other sensor, such as SCIAMACHY, in the
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inversion. Inclusion of those observations will undoubtedly
add more information to the optimization of emission.
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