5 research outputs found

    Transcriptomics of Haemophilus (GlÀsserella) parasuis serovar 5 subjected to culture conditions partially mimetic to natural infection for the search of new vaccine antigens

    Get PDF
    11 p.Haemophilus (GlĂ€sserella) parasuis is the etiological agent of GlĂ€sser’s disease in pigs. Control of this disorder has been traditionally based on bacterins. The search for alternative vaccines has focused mainly on the study of outer membrane proteins. This study investigates the transcriptome of H. (G.) parasuis serovar 5 subjected to in vitro conditions mimicking to those existing during an infection (high temperature and iron-restriction), with the aim of detecting the overexpression of genes coding proteins exposed on bacterial surface, which could represent good targets as vaccine candidates. The transcriptomic approach identified 13 upregulated genes coding surface proteins: TbpA, TbpB, HxuA, HxuB, HxuC, FhuA, FimD, TolC, an autotransporter, a protein with immunoglobulin folding domains, another large protein with a tetratricopeptide repeat and two small proteins that did not contain any known domains. Of these, the first six genes coded proteins being related to iron extraction. Six of the proteins have already been tested as vaccine antigens in murine and/or porcine infection models and showed protection against H. (G.) parasuis. However, the remaining seven have not yet been tested and, consequently, they could become useful as putative antigens in the prevention of GlĂ€sser’s disease. Anyway, the expression of this seven novel vaccine candidates should be shown in other serovars different from serovar 5.S

    Global Effects of Catecholamines on Actinobacillus pleuropneumoniae Gene Expression

    Get PDF
    Bacteria can use mammalian hormones to modulate pathogenic processes that play essential roles in disease development. Actinobacillus pleuropneumoniae is an important porcine respiratory pathogen causing great economic losses in the pig industry globally. Stress is known to contribute to the outcome of A. pleuropneumoniae infection. To test whether A. pleuropneumoniae could respond to stress hormone catecholamines, gene expression profiles after epinephrine (Epi) and norepinephrine (NE) treatment were compared with those from untreated bacteria. The microarray results showed that 158 and 105 genes were differentially expressed in the presence of Epi and NE, respectively. These genes were assigned to various functional categories including many virulence factors. Only 18 genes were regulated by both hormones. These genes included apxIA (the ApxI toxin structural gene), pgaB (involved in biofilm formation), APL_0443 (an autotransporter adhesin) and genes encoding potential hormone receptors such as tyrP2, the ygiY-ygiX (qseC-qseB) operon and narQ-narP (involved in nitrate metabolism). Further investigations demonstrated that cytotoxic activity was enhanced by Epi but repressed by NE in accordance with apxIA gene expression changes. Biofilm formation was not affected by either of the two hormones despite pgaB expression being affected. Adhesion to host cells was induced by NE but not by Epi, suggesting that the hormones affect other putative adhesins in addition to APL_0443. This study revealed that A. pleuropneumoniae gene expression, including those encoding virulence factors, was altered in response to both catecholamines. The differential regulation of A. pleuropneumoniae gene expression by the two hormones suggests that this pathogen may have multiple responsive systems for the two catecholamines

    Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives

    No full text
    corecore