5,351 research outputs found

    Generalized Completed Local Binary Patterns for Time-Efficient Steel Surface Defect Classification

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Efficient defect classification is one of the most important preconditions to achieve online quality inspection for hot-rolled strip steels. It is extremely challenging owing to various defect appearances, large intraclass variation, ambiguous interclass distance, and unstable gray values. In this paper, a generalized completed local binary patterns (GCLBP) framework is proposed. Two variants of improved completed local binary patterns (ICLBP) and improved completed noise-invariant local-structure patterns (ICNLP) under the GCLBP framework are developed for steel surface defect classification. Different from conventional local binary patterns variants, descriptive information hidden in nonuniform patterns is innovatively excavated for the better defect representation. This paper focuses on the following aspects. First, a lightweight searching algorithm is established for exploiting the dominant nonuniform patterns (DNUPs). Second, a hybrid pattern code mapping mechanism is proposed to encode all the uniform patterns and DNUPs. Third, feature extraction is carried out under the GCLBP framework. Finally, histogram matching is efficiently accomplished by simple nearest-neighbor classifier. The classification accuracy and time efficiency are verified on a widely recognized texture database (Outex) and a real-world steel surface defect database [Northeastern University (NEU)]. The experimental results promise that the proposed method can be widely applied in online automatic optical inspection instruments for hot-rolled strip steel.Peer reviewe

    Breaking parameter degeneracy in interacting dark energy models from observations

    Full text link
    We study the interacting dark energy model with time varying dark energy equation of state. We examine the stability in the perturbation formalism and the degeneracy among the coupling between dark sectors, the time-dependent dark energy equation of state and dark matter abundance in the cosmic microwave background radiation. Further we discuss the possible ways to break such degeneracy by doing global fitting using the latest observational data and we get a tight constraint on the interaction between dark sectors.Comment: 8 pages, 6 figures, accepted for publication in Phys.Lett.

    Unmodified Gravity

    Full text link
    By relaxing the conventional assumption of a purely gravitational interaction between dark energy and dark matter, substantial alterations to the growth of cosmological structure can occur. In this work we focus on the homogeneous transfer of energy from a decaying form of dark energy. We present simple analytic solutions to the modified growth rates of matter fluctuations in these models, and demonstrate that neglecting physics within the dark sector may induce a significant bias in the inferred growth rate, potentially offering a false signature of modified gravity.Comment: 7 pages, 5 figures, new eq (7), changes reflect published versio

    Total positivity for matroid Schubert varieties

    Full text link
    We define the totally nonnegative matroid Schubert variety YV\mathcal Y_V of a linear subspace VRnV \subset \mathbb R^n. We show that YV\mathcal Y_V is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats of the oriented matroid of VV. This closely resembles the regularity theorem for totally nonnegative generalized flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of VV.Comment: Comments welcome

    Microoptomechanical pumps assembled and driven by holographic optical vortex arrays

    Full text link
    Beams of light with helical wavefronts can be focused into ring-like optical traps known as optical vortices. The orbital angular momentum carried by photons in helical modes can be transferred to trapped mesoscopic objects and thereby coupled to a surrounding fluid. We demonstrate that arrays of optical vortices created with the holographic optical tweezer technique can assemble colloidal spheres into dynamically reconfigurable microoptomechanical pumps assembled by optical gradient forces and actuated by photon orbital angular momentum.Comment: 4 pages, 3 figures, submitted to Optics Expres

    A Model for Dark Energy decay

    Full text link
    We discuss a model of non perturbative decay of dark energy into hot and cold dark matter. This model provides a mechanism from the field theory to realize the energy transfer from dark energy into dark matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is the fact that we accommodate a mean life compatible with the age of the universe. We also argue that supersymmetry is a natural set up, though not essential.Comment: 5 pages to be published in Physics Letters

    Colloidal hydrodynamic coupling in concentric optical vortices

    Full text link
    Optical vortex traps created from helical modes of light can drive fluid-borne colloidal particles in circular trajectories. Concentric circulating rings of particles formed by coaxial optical vortices form a microscopic Couette cell, in which the amount of hydrodynamic drag experienced by the spheres depends on the relative sense of the rings' circulation. Tracking the particles' motions makes possible measurements of the hydrodynamic coupling between the circular particle trains and addresses recently proposed hydrodynamic instabilities for collective colloidal motions on optical vortices.Comment: 7 pages, 2 figures, submitted to Europhysics Letter

    FUNCTION AND STRENGTH OF PHYSICALLY ACTIVE INDIVIDUALS WITH A UNILATERAL, SINGLE-AXIS KNEE REPLACEMENT

    Get PDF
    INTRODUCTION: Only recently could total knee replacement (TKR) individuals participate in many activities that place high stress on the knee region, e.g., golf. To enhance physical functioning, TKR components must be able to provide optimal leverage for the quadriceps to generate extensor torque, a-p stability when the cruciate ligaments are sacrificed, and varusvalgus stability via adequate medial and lateral collateral tension throughout the (Range of Motion) ROM. The use of a single flexion/extension (F/E) axis TKR design rather than a multiaxial TKR design has been theorized to accomplish these goals. Therefore, for this work in progress, it was of interest to determine for physically active individuals if the strength and function of the limb with a unilateral, single-axis TKR would be different to that of the intact limb
    corecore