Light-induced rotation of absorbing microscopic particles by transfer of
angular momentum from light to the material raises the possibility of optically
driven micromachines. The phenomenon has been observed using elliptically
polarized laser beams or beams with helical phase structure. But it is
difficult to develop high power in such experiments because of overheating and
unwanted axial forces, limiting the achievable rotation rates to a few hertz.
This problem can in principle be overcome by using transparent particles,
transferring angular momentum by a mechanism first observed by Beth in 1936,
when he reported a tiny torque developed in a quartz waveplate due to the
change in polarization of transmitted light. Here we show that an optical
torque can be induced on microscopic birefringent particles of calcite held by
optical tweezers. Depending on the polarization of the incident beam, the
particles either become aligned with the plane of polarization (and thus can be
rotated through specified angles) or spin with constant rotation frequency.
Because these microscopic particles are transparent, they can be held in
three-dimensional optical traps at very high power without heating. We have
observed rotation rates in excess of 350 Hz.Comment: 4 pages, 4 figure