60 research outputs found

    Fission Yeast Bub1 Is a Mitotic Centromere Protein Essential for the Spindle Checkpoint and the Preservation of Correct Ploidy through Mitosis

    Get PDF
    The spindle checkpoint ensures proper chromosome segregation by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. We investigated the role of the fission yeast bub1 gene in spindle checkpoint function and in unperturbed mitoses. We find that bub1+ is essential for the fission yeast spindle checkpoint response to spindle damage and to defects in centromere function. Activation of the checkpoint results in the recruitment of Bub1 to centromeres and a delay in the completion of mitosis. We show that Bub1 also has a crucial role in normal, unperturbed mitoses. Loss of bub1 function causes chromosomes to lag on the anaphase spindle and an increased frequency of chromosome loss. Such genomic instability is even more dramatic in Δbub1 diploids, leading to massive chromosome missegregation events and loss of the diploid state, demonstrating that bub1+ function is essential to maintain correct ploidy through mitosis. As in larger eukaryotes, Bub1 is recruited to kinetochores during the early stages of mitosis. However, unlike its vertebrate counterpart, a pool of Bub1 remains centromere-associated at metaphase and even until telophase. We discuss the possibility of a role for the Bub1 kinase after the metaphase–anaphase transition

    Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    Get PDF
    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation

    A Novel Signaling Pathway Mediated by the Nuclear Targeting of C-Terminal Fragments of Mammalian Patched 1

    Get PDF
    Background: Patched 1 (Ptc1) is a polytopic receptor protein that is essential for growth and differentiation. Its extracellular domains accept its ligand, Sonic Hedgehog, while the function of its C-terminal intracellular domain is largely obscure. Principal Findings: In this study, we stably expressed human Ptc1 protein in HeLa cells and found that it is subjected to proteolytic cleavage at the C-terminus, resulting in the generation of soluble C-terminal fragments. These fragments accumulated in the nucleus, while the N-terminal region of Ptc1 remained in the cytoplasmic membrane fractions. Using an anti-Ptc1 C-terminal domain antibody, we provide conclusive evidence that C-terminal fragments of endogenous Ptc1 accumulate in the nucleus of C3H10T1/2 cells. Similar nuclear accumulation of endogenous C-terminal fragments was observed not only in C3H10T1/2 cells but also in mouse embryonic primary cells. Importantly, the C-terminal fragments of Ptc1 modulate transcriptional activity of Gli1. Conclusions: Although Ptc1 protein was originally thought to be restricted to cell membrane fractions, our findings sugges

    Selective heteromeric assembly of cyclic nucleotide-gated channels

    No full text
    Many ion channels in vivo are heteromeric complexes with well defined subunit compositions. For some channels, domains have been identified that determine whether two or more subunit species are compatible in forming a complex. Nonetheless, an unsolved fundamental question is how the native composition of an ion channel is selected during assembly over functional alternatives, such as heteromeric complexes favored over homomers. Cyclic nucleotide-gated channels are tetramers and, in their native forms, are composed of A and B subunits. Although most A subunits can form functional homomeric channels when expressed alone, A/B heteromeric channels are selectively formed in the presence of a B subunit. Here, we show that this selective assembly of heteromeric channels requires a trimer-forming C-terminal leucine zipper (CLZ) domain recently identified in the distal C terminus of A, but not B, subunits. Thus, a CLZ-defective A subunit no longer forms predominantly A/B heteromeric channels with the B subunit. A mechanism for this specificity involving the trimerization of the CLZ domain is proposed
    corecore