1,788 research outputs found

    The chronic pain coping inventory: Confirmatory factor analysis of the French version

    Get PDF
    BACKGROUND: Coping strategies are among the psychosocial factors hypothesized to contribute to the development of chronic musculoskeletal disability. The Chronic Pain Coping Inventory (CPCI) was developed to assess eight behavioral coping strategies targeted in multidisciplinary pain treatment (Guarding, Resting, Asking for Assistance, Task Persistence, Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support). The present study had two objectives. First, it aimed at measuring the internal consistency and the construct validity of the French version of the CPCI. Second, it aimed to verify if, as suggested by the CPCI authors, the scales of this instrument can be grouped according to the following coping families: Illness-focused coping and Wellness-focused coping. METHOD: The CPCI was translated into French with the forward and backward translation procedure. To evaluate internal consistency, Cronbach's alphas were computed. Construct validity of the inventory was estimated through confirmatory factor analysis (CFA) in two samples: a group of 439 Quebecois workers on sick leave in the sub-acute stage of low back pain (less than 84 days after the work accident) and a group of 388 French chronic pain patients seen in a pain clinic. A CFA was also performed to evaluate if the CPCI scales were grouped into two coping families (i.e. Wellness-focused and Illness-focused coping). RESULTS: The French version of the CPCI had adequate internal consistency in both samples. The CFA confirmed the eight-scale structure of the CPCI. A series of second-order CFA confirmed the composition of the Illness-focused family of coping (Guarding, Resting and Asking for Assistance). However, the composition of the Wellness-focused family of coping (Relaxation, Exercise/Stretch, Coping Self-Statements and Seeking Social Support) was different than the one proposed by the authors of the CPCI. Also, a positive correlation was observed between Illness and Wellness coping families. CONCLUSION: The present study indicates that the internal consistency and construct validity of the French version of the CPCI were adequate, but the grouping and labeling of the CPCI families of coping are debatable and deserve further analysis in the context of musculoskeletal and pain rehabilitation

    Co-opetition models for governing professional football

    Get PDF
    In recent years, models for co-creating value in a business-to-business context have often been examined with the aim of studying the strategies implemented by and among organisations for competitive and co-operative purposes. The traditional concepts of competition and co-operation between businesses have now evolved, both in terms of the sector in which the businesses operate and in terms of the type of goods they produce. Many researchers have, in recent times, investigated the determinants that can influence the way in which the model of co-opetition can be applied to the football world. Research interest lies in the particular features of what makes a good football. In this paper, the aim is to conduct an analysis of the rules governing the “football system”, while also looking at the determinants of the demand function within football entertainment. This entails applying to football match management the co-opetition model, a recognised model that combines competition and co-operation with the view of creating and distributing value. It can, therefore, be said that, for a spectator, watching sport is an experience of high suspense, and this suspense, in turn, depends upon the degree of uncertainty in the outcome. It follows that the rules ensuring that both these elements can be satisfied are a fertile ground for co-operation between clubs, as it is in the interest of all stakeholders to offer increasingly more attractive football, in comparison with other competing products. Our end purpose is to understand how co-opetition can be achieved within professional football

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates

    Increased efficacy for in-house validation of real-time PCR GMO detection methods

    Get PDF
    To improve the efficacy of the in-house validation of GMO detection methods (DNA isolation and real-time PCR, polymerase chain reaction), a study was performed to gain insight in the contribution of the different steps of the GMO detection method to the repeatability and in-house reproducibility. In the present study, 19 methods for (GM) soy, maize canola and potato were validated in-house of which 14 on the basis of an 8-day validation scheme using eight different samples and five on the basis of a more concise validation protocol. In this way, data was obtained with respect to the detection limit, accuracy and precision. Also, decision limits were calculated for declaring non-conformance (>0.9%) with 95% reliability. In order to estimate the contribution of the different steps in the GMO analysis to the total variation variance components were estimated using REML (residual maximum likelihood method). From these components, relative standard deviations for repeatability and reproducibility (RSDr and RSDR) were calculated. The results showed that not only the PCR reaction but also the factors ‘DNA isolation’ and ‘PCR day’ are important factors for the total variance and should therefore be included in the in-house validation. It is proposed to use a statistical model to estimate these factors from a large dataset of initial validations so that for similar GMO methods in the future, only the PCR step needs to be validated. The resulting data are discussed in the light of agreed European criteria for qualified GMO detection methods

    Astrocytic Ion Dynamics: Implications for Potassium Buffering and Liquid Flow

    Get PDF
    We review modeling of astrocyte ion dynamics with a specific focus on the implications of so-called spatial potassium buffering, where excess potassium in the extracellular space (ECS) is transported away to prevent pathological neural spiking. The recently introduced Kirchoff-Nernst-Planck (KNP) scheme for modeling ion dynamics in astrocytes (and brain tissue in general) is outlined and used to study such spatial buffering. We next describe how the ion dynamics of astrocytes may regulate microscopic liquid flow by osmotic effects and how such microscopic flow can be linked to whole-brain macroscopic flow. We thus include the key elements in a putative multiscale theory with astrocytes linking neural activity on a microscopic scale to macroscopic fluid flow.Comment: 27 pages, 7 figure

    Mucus extravasation and retention phenomena: a 24-year study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucoceles are benign lesions related to the minor salivary glands and their respective ducts frequently affecting oral structures which are generally asymptomatic. Mucoceles are generally characterized by swollen nodular lesions preferentially located on the lower lip and differ from the so-called ranulas, which are lesions located on the floor of the mouth and related to the sublingual or submandibular glands.</p> <p>Methods</p> <p>The objective of the present study was to analyze data such as age, gender, race and site of the lesion of 173 mucocele cases diagnosed at the Discipline of Stomatology, São José dos Campos Dental School, UNESP, over a period of 24 years (April 1980 to February 2003).</p> <p>Results</p> <p>Of the 173 cases analyzed, 104 (60.12%) were females and 69 (39.88%) were males. Age ranged from 4 to 70 years (mean ± SD: 17 ± 9.53) and most patients were in the second decade of life (n = 86, 49.42%); white (n = 124, 71.68%). The lower lip was the site most frequently affected by the lesions (n = 135, 78.03%), whereas the lowest prevalence was observed for the soft palate, buccal mucosa, and lingual frenum.</p> <p>Conclusion</p> <p>In this study, mucoceles predominated in white female subjects in the second decade of life, with the lower lip being the most frequently affected site.</p

    Constructing Biological Pathways by a Two-Step Counting Approach

    Get PDF
    Networks are widely used in biology to represent the relationships between genes and gene functions. In Boolean biological models, it is mainly assumed that there are two states to represent a gene: on-state and off-state. It is typically assumed that the relationship between two genes can be characterized by two kinds of pairwise relationships: similarity and prerequisite. Many approaches have been proposed in the literature to reconstruct biological relationships. In this article, we propose a two-step method to reconstruct the biological pathway when the binary array data have measurement error. For a pair of genes in a sample, the first step of this approach is to assign counting numbers for every relationship and select the relationship with counting number greater than a threshold. The second step is to calculate the asymptotic p-values for hypotheses of possible relationships and select relationships with a large p-value. This new method has the advantages of easy calculation for the counting numbers and simple closed forms for the p-value. The simulation study and real data example show that the two-step counting method can accurately reconstruct the biological pathway and outperform the existing methods. Compared with the other existing methods, this two-step method can provide a more accurate and efficient alternative approach for reconstructing the biological network

    Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners

    Get PDF
    Taxonomy relies greatly on morphology to discriminate groups. Computerized geometric morphometric methods for quantitative shape analysis measure, test and visualize differences in form in a highly effective, reproducible, accurate and statistically powerful way. Plant leaves are commonly used in taxonomic analyses and are particularly suitable to landmark based geometric morphometrics. However, botanists do not yet seem to have taken advantage of this set of methods in their studies as much as zoologists have done. Using free software and an example dataset from two geographical populations of sessile oak leaves, we describe in detailed but simple terms how to: a) compute size and shape variables using Procrustes methods; b) test measurement error and the main levels of variation (population and trees) using a hierachical design; c) estimate the accuracy of group discrimination; d) repeat this estimate after controlling for the effect of size differences on shape (i.e., allometry). Measurement error was completely negligible; individual variation in leaf morphology was large and differences between trees were generally bigger than within trees; differences between the two geographic populations were small in both size and shape; despite a weak allometric trend, controlling for the effect of size on shape slighly increased discrimination accuracy. Procrustes based methods for the analysis of landmarks were highly efficient in measuring the hierarchical structure of differences in leaves and in revealing very small-scale variation. In taxonomy and many other fields of botany and biology, the application of geometric morphometrics contributes to increase scientific rigour in the description of important aspects of the phenotypic dimension of biodiversity. Easy to follow but detailed step by step example studies can promote a more extensive use of these numerical methods, as they provide an introduction to the discipline which, for many biologists, is less intimidating than the often inaccessible specialistic literature
    corecore