859 research outputs found
Confluent Orthogonal Drawings of Syntax Diagrams
We provide a pipeline for generating syntax diagrams (also called railroad
diagrams) from context free grammars. Syntax diagrams are a graphical
representation of a context free language, which we formalize abstractly as a
set of mutually recursive nondeterministic finite automata and draw by
combining elements from the confluent drawing, layered drawing, and smooth
orthogonal drawing styles. Within our pipeline we introduce several heuristics
that modify the grammar but preserve the language, improving the aesthetics of
the final drawing.Comment: GD 201
Role of Esrrg in the Fibrate-Mediated Regulation of Lipid Metabolism Genes in Human ApoA-I Transgenic Mice
We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.National Institutes of Health (HL48739 and HL68216); European Union (LSHM-CT-2006-0376331, LSHG-CT-2006-037277); the Biomedical Research Foundation of the Academy of Athens; the Hellenic Cardiological Society; the John F Kostopoulos Foundatio
Obesity and pronated foot type may increase the risk of chronic plantar heel pain : a matched case-control study
Background : Chronic plantar heel pain (CPHP) is one of the most common musculoskeletal disorders of the foot, yet its aetiology is poorly understood. The purpose of this study was to examine the association between CPHP and a number of commonly hypothesised causative factors.Methods : Eighty participants with CPHP (33 males, 47 females, mean age 52.3 years, S.D. 11.7) were matched by age (± 2 years) and sex to 80 control participants (33 males, 47 females, mean age 51.9 years, S.D. 11.8). The two groups were then compared on body mass index (BMI), foot posture as measured by the Foot Posture Index (FPI), ankle dorsiflexion range of motion (ROM) as measured by the Dorsiflexion Lunge Test, occupational lower limb stress using the Occupational Rating Scale and calf endurance using the Standing Heel Rise Test.Results : Univariate analysis demonstrated that the CPHP group had significantly greater BMI (29.8 ± 5.4 kg/m2 vs. 27.5 ± 4.9 kg/m2; P < 0.01), a more pronated foot posture (FPI score 2.4 ± 3.3 vs. 1.1 ± 2.3; P < 0.01) and greater ankle dorsiflexion ROM (45.1 ± 7.1° vs. 40.5 ± 6.6°; P < 0.01) than the control group. No difference was identified between the groups for calf endurance or time spent sitting, standing, walking on uneven ground, squatting, climbing or lifting. Multivariate logistic regression revealed that those with CPHP were more likely to be obese (BMI ≥ 30 kg/m2) (OR 2.9, 95% CI 1.4 – 6.1, P < 0.01) and to have a pronated foot posture (FPI ≥ 4) (OR 3.7, 95% CI 1.6 – 8.7, P < 0.01).Conclusion : Obesity and pronated foot posture are associated with CPHP and may be risk factors for the development of the condition. Decreased ankle dorsiflexion, calf endurance and occupational lower limb stress may not play a role in CPHP.<br /
A negative screen for mutations in calstabin 1 and 2 genes in patients with dilated cardiomyopathy
<p>Abstract</p> <p>Background</p> <p>Calstabins 1 and 2 bind to Ryanodine receptors regulating muscle excitation-contraction coupling. Mutations in Ryanodine receptors affecting their interaction with calstabins lead to different cardiac pathologies. Animal studies suggest the involvement of calstabins with dilated cardiomyopathy.</p> <p>Results</p> <p>We tested the hypothesis that calstabins mutations may cause dilated cardiomyopathy in humans screening 186 patients with idiopathic dilated cardiomyopathy for genetic alterations in calstabins 1 and 2 genes (<it>FKBP12 </it>and <it>FKBP12.6)</it>. No missense variant was found. Five no-coding variations were found but not related to the disease.</p> <p>Conclusions</p> <p>These data corroborate other studies suggesting that mutations in <it>FKBP12 </it>and <it>FKBP12.6 </it>genes are not commonly related to cardiac diseases.</p
Physician and Patient Predictors of Evidence-Based Prescribing in Heart Failure: A Multilevel Study
BACKGROUND: The management of patients with heart failure (HF) needs to account for changeable and complex individual clinical characteristics. The use of renin angiotensin system inhibitors (RAAS-I) to target doses is recommended by guidelines. But physicians seemingly do not sufficiently follow this recommendation, while little is known about the physician and patient predictors of adherence. METHODS: To examine the coherence of primary care (PC) physicians' knowledge and self-perceived competencies regarding RAAS-I with their respective prescribing behavior being related to patient-associated barriers. Cross-sectional follow-up study after a randomized medical educational intervention trial with a seven month observation period. PC physicians (n = 37) and patients with systolic HF (n = 168) from practices in Baden-Wuerttemberg. Measurements were knowledge (blueprint-based multiple choice test), self-perceived competencies (questionnaire on global confidence in the therapy and on frequency of use of RAAS-I), and patient variables (age, gender, NYHA functional status, blood pressure, potassium level, renal function). Prescribing was collected from the trials' documentation. The target variable consisted of ≥50% of recommended RAAS-I dosage being investigated by two-level logistic regression models. RESULTS: Patients (69% male, mean age 68.8 years) showed symptomatic and objectified left ventricular (NYHA II vs. III/IV: 51% vs. 49% and mean LVEF 33.3%) and renal (GFR<50%: 22%) impairment. Mean percentage of RAAS-I target dose was 47%, 59% of patients receiving ≥50%. Determinants of improved prescribing of RAAS-I were patient age (OR 0.95, CI 0.92-0.99, p = 0.01), physician's global self-confidence at follow-up (OR 1.09, CI 1.02-1.05, p = 0.01) and NYHA class (II vs. III/IV) (OR 0.63, CI 0.38-1.05, p = 0.08). CONCLUSIONS: A change in physician's confidence as a predictor of RAAS-I dose increase is a new finding that might reflect an intervention effect of improved physicians' intention and that might foster novel strategies to improve safe evidence-based prescribing. These should include targeting knowledge, attitudes and skills
Impact Factor: outdated artefact or stepping-stone to journal certification?
A review of Garfield's journal impact factor and its specific implementation
as the Thomson Reuters Impact Factor reveals several weaknesses in this
commonly-used indicator of journal standing. Key limitations include the
mismatch between citing and cited documents, the deceptive display of three
decimals that belies the real precision, and the absence of confidence
intervals. These are minor issues that are easily amended and should be
corrected, but more substantive improvements are needed. There are indications
that the scientific community seeks and needs better certification of journal
procedures to improve the quality of published science. Comprehensive
certification of editorial and review procedures could help ensure adequate
procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table
On the Complexity of Scheduling in Wireless Networks
We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model the interference using a family of K-hop interference models, under which no two links within a K-hop distance can successfully transmit at the same time. For a given K, we can obtain a throughput-optimal scheduling policy by solving the well-known maximum weighted matching problem. We show that for K > 1, the resulting problems are NP-Hard that cannot be approximated within a factor that grows polynomially with the number of nodes. Interestingly, for geometric unit-disk graphs that can be used to describe a wide range of wireless networks, the problems admit polynomial time approximation schemes within a factor arbitrarily close to 1. In these network settings, we also show that a simple greedy algorithm can provide a 49-approximation, and the maximal matching scheduling policy, which can be easily implemented in a distributed fashion, achieves a guaranteed fraction of the capacity region for "all K." The geometric constraints are crucial to obtain these throughput guarantees. These results are encouraging as they suggest that one can develop low-complexity distributed algorithms to achieve near-optimal throughput for a wide range of wireless networksopen1
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
- …