3 research outputs found

    Euniwell: Maximising Academic And Social Outcomes In Engineering Education

    Get PDF
    The ERASMUS+ European University for Well-Being (EUniWell) alliance’s mission aims to resolve the paradox of Europeans’ relative prosperity against the global security and sustainability challenge. “Maximising Academic and Social Outcomes in Engineering Education” is a project which interprets this contradiction for engineering educators; how to best teach non-technical skills to ensure engineers make the utmost contribution to societal wellbeing? Appreciably, the social outcome for the person who becomes an engineer is positive because the profession is relatively well-paid. Therefore, engineering education is good for social mobility providing the learning environment narrows attainment gaps between disadvantaged and mainstream cohorts. Accordingly, our strategy is to bring together the expertise of the British, French, Italian and Swedish faculties to transfer best practice for professional, business and sustainability skill teaching, while contrasting how their disadvantaged cohorts present. The project has two primary objectives: To understand how partners differ in terms of skill teaching, and how students from disadvantaged backgrounds are accommodated. The paper describes the background and rationale of the project, and its research design and methodology. Although the project is still in progress and data collection is still underway, this paper provides insights and perspectives for engineering educators looking to design similar collaborations to share best practice, while considering engineering identities and their underlying competencies

    Analysis of non-dimensional numbers of fluid flowing inside tubes of flat plate solar collector

    Get PDF
    The aim of this paper is to discuss the non-dimensional numbers of fluid flowing through inside the tubes of flat plate solar collectors. Empirically, to abate the cost and energy consumption or to boost up the performance and efficiency of solar collectors; computational simulation plays a vital role. In this study, CFD numerical simulation of aqueous ethylene glycol (60% water + 40%) ethylene glycol fluid flow has been done with ANSYS 15.0. Non-dimensional numbers such as surface Nusselt number, Skin friction coefficient and Prandtl number of fluids have been observed based on empirical and experimental properties. The geometry of design has been prepared using Solidworks software in accordance with the actual experimental model. The analysis revealed that the Nusselt number showed effective convection behavior, the skin friction coefficient was positive while the Prandtl number was large for both properties of aqueous ethylene glycol

    State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles

    No full text
    corecore