1,399 research outputs found
Collider Production of TeV Scale Black Holes and Higher-Curvature Gravity
We examine how the production of TeV scale black holes at colliders is
influenced by the presence of Lovelock higher-curvature terms in the action of
models with large extra dimensions. Such terms are expected to arise on rather
general grounds, e.g., from string theory and are often used in the literature
to model modifications to the Einstein-Hilbert action arising from quantum
and/or stringy corrections. While adding the invariant which is quadratic in
the curvature leads to quantitative modifications in black hole properties,
cubic and higher invariants are found to produce significant qualitative
changes, e.g., classically stable black holes. We use these higher-order
curvature terms to construct a toy model of the black hole production cross
section threshold. For reasonable parameter values we demonstrate that detailed
measurements of the properties of black holes at future colliders will be
highly sensitive to the presence of the Lovelock higher-order curvature terms.Comment: 37 pages, 11 figures, references adde
Outer Regions of the Milky Way
With the start of the Gaia era, the time has come to address the major
challenge of deriving the star formation history and evolution of the disk of
our MilkyWay. Here we review our present knowledge of the outer regions of the
Milky Way disk population. Its stellar content, its structure and its dynamical
and chemical evolution are summarized, focussing on our lack of understanding
both from an observational and a theoretical viewpoint. We describe the
unprecedented data that Gaia and the upcoming ground-based spectroscopic
surveys will provide in the next decade. More in detail, we quantify the expect
accuracy in position, velocity and astrophysical parameters of some of the key
tracers of the stellar populations in the outer Galactic disk. Some insights on
the future capability of these surveys to answer crucial and fundamental issues
are discussed, such as the mechanisms driving the spiral arms and the warp
formation. Our Galaxy, theMilkyWay, is our cosmological laboratory for
understanding the process of formation and evolution of disk galaxies. What we
learn in the next decades will be naturally transferred to the extragalactic
domain.Comment: 22 pages, 10 figures, Invited review, Book chapter in "Outskirts of
Galaxies", Eds. J. H. Knapen, J. C. Lee and A. Gil de Paz, Astrophysics and
Space Science Library, Springer, in pres
New Detections of Optical Emission from Kiloparsec-scale Quasar Jets
We report initial results from the detection of optical emission in the
arcsecond-scale radio jets of two quasars utilizing images from the {\it Hubble
Space Telescope} archive. The optical emission has a very knotty appearance and
is consistent with synchrotron emission from highly relativistic electrons in
the jet. Combining these observations with those of previously reported
features in other quasars, an emerging trend appears to be that their
radio-to-optical spectral indices are steeper than those of similar features in
jets of lower power radio sources.Comment: 4 pgs, 2 figs, Proc of The Physics of Relativistic Jets in the
Chandra and XMM Era workshop, eds. G. Brunetti, D.E. Harris, R.M. Sambruna,
and G. Setti, submitted to New Astronomy Review. Quality of figure 1 degraded
to fit into preprint server. Includes elsart.cls fil
Discrimination, labour markets and the Labour Market Prospects of Older Workers: What Can a Legal Case Teach us?
As governments become increasingly concerned about the fiscal implications of the ageing population, labour market policies have sought to encourage mature workers to remain in the labour force. The ‘human capital’ discourses motivating these policies rest on the assumption that older workers armed with motivation and vocational skills will be able to return to fulfilling work. This paper uses the post-redundancy recruitment experiences of former Ansett Airlines
flight attendants to develop a critique of these expectations. It suggests that policies to increase
older workers’ labour market participation will not succeed while persistent socially constructed age- and gender- typing shape labour demand. The conclusion argues for policies sensitive to the institutional structures that shape employer preferences, the competitive rationality of
discriminatory practices, and the irresolvable tension between workers’ human rights and employers’ property rights
Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer.
Sum rules and energy scales in the high-temperature superconductor YBa2Cu3O6+x
The Ferrell-Glover-Tinkham (FGT) sum rule has been applied to the temperature
dependence of the in-plane optical conductivity of optimally-doped
YBa_2Cu_3O_{6.95} and underdoped YBa_2Cu_3O_{6.60}. Within the accuracy of the
experiment, the sum rule is obeyed in both materials. However, the energy scale
\omega_c required to recover the full strength of the superfluid \rho_s in the
two materials is dramatically different; \omega_c \simeq 800 cm^{-1} in the
optimally doped system (close to twice the maximum of the superconducting gap,
2\Delta_0), but \omega_c \gtrsim 5000 cm^{-1} in the underdoped system. In both
materials, the normal-state scattering rate close to the critical temperature
is small, \Gamma < 2\Delta_0, so that the materials are not in the dirty limit
and the relevant energy scale for \rho_s in a BCS material should be twice the
energy gap. The FGT sum rule in the optimally-doped material suggests that the
majority of the spectral weight of the condensate comes from energies below
2\Delta_0, which is consistent with a BCS material in which the condensate
originates from a Fermi liquid normal state. In the underdoped material the
larger energy scale may be a result of the non-Fermi liquid nature of the
normal state. The dramatically different energy scales suggest that the nature
of the normal state creates specific conditions for observing the different
aspects of what is presumably a central mechanism for superconductivity in
these materials.Comment: RevTeX 4 file, 9 pages with 7 embedded eps figure
Effect of a Normal-State Pseudogap on Optical Conductivity in Underdoped Cuprate Superconductors
We calculate the c-axis infrared conductivity in
underdoped cuprate superconductors for spinfluctuation exchange scattering
within the CuO-planes including a phenomenological d-wave pseudogap of
amplitude . For temperatures decreasing below a temperature , a gap for develops in in the
incoherent (diffuse) transmission limit. The resistivity shows 'semiconducting'
behavior, i.e. it increases for low temperatures above the constant behavior
for . We find that the pseudogap structure in the in-plane optical
conductivity is about twice as big as in the interplane conductivity
, in qualitative agreement with experiment. This is a
consequence of the fact that the spinfluctuation exchange interaction is
suppressed at low frequencies as a result of the opening of the pseudogap.
While the c-axis conductivity in the underdoped regime is described best by
incoherent transmission, in the overdoped regime coherent conductance gives a
better description.Comment: to be published in Phys. Rev. B (November 1, 1999
An inhomogeneous Josephson phase in thin-film and High-Tc superconductors
In many cases inhomogeneities are known to exist near the metal (or
superconductor)-insulator transition, as follows from well-known domain-wall
arguments. If the conducting regions are large enough (i.e. when the T=0
superconducting gap is much larger than the single-electron level spacing), and
if they have superconducting correlations, it becomes energetically favorable
for the system to go into a Josephson-coupled zero-resistance state before
(i.e. at higher resistance than) becoming a "real" metal. We show that this is
plausible by a simple comparison of the relevant coupling constants. For small
grains in the above sense, the electronic grain structure is washed out by
delocalization and thus becomes irrelevant. When the proposed "Josephson state"
is quenched by a magnetic field, an insulating, rather then a metallic, state
should appear. This has been shown to be consistent with the existing data on
oxide materials as well as ultra-thin films. We discuss the Uemura correlations
versus the Homes law, and derive the former for the large-grain Josephson array
(inhomogenous superconductor) model. The small-grain case behaves like a dirty
homogenous metal. It should obey the Homes law provided that the system is in
the dirty supeconductivity limit. A speculation why that is typically the case
for d-wave superconductors is presented.Comment: Conference proceeding for "Fluctuations in Superconductors" held in
Nazareth, Israel in June, 2007; 6 pages with 1 figure, to appear in Physica
Disorder-to-order transition in the magnetic and electronic properties of URh_2Ge_2
We present a study of annealing effects on the physical properties of
tetragonal single--crystalline URh_2Ge_2. This system, which in as-grown form
was recently established as the first metallic 3D random-bond heavy-fermion
spin glass, is transformed by an annealing treatment into a long-range
antiferromagnetically (AFM) ordered heavy-fermion compound. The transport
properties, which in the as-grown material were dominated by the structural
disorder, exhibit in the annealed material signs of typical metallic behavior
along the crystallographic a axis. From our study URh_2Ge_2 emerges as
exemplary material highlighting the role and relevance of structural disorder
for the properties of strongly correlated electron systems. We discuss the link
between the magnetic and electronic behavior and how they are affected by the
structural disorder.Comment: Phys. Rev. B, in print (scheduled 1 Mar 2000
Multiorder coherent Raman scattering of a quantum probe field
We study the multiorder coherent Raman scattering of a quantum probe field in
a far-off-resonance medium with a prepared coherence. Under the conditions of
negligible dispersion and limited bandwidth, we derive a Bessel-function
solution for the sideband field operators. We analytically and numerically
calculate various quantum statistical characteristics of the sideband fields.
We show that the multiorder coherent Raman process can replicate the
statistical properties of a single-mode quantum probe field into a broad comb
of generated Raman sidebands. We also study the mixing and modulation of photon
statistical properties in the case of two-mode input. We show that the prepared
Raman coherence and the medium length can be used as control parameters to
switch a sideband field from one type of photon statistics to another type, or
from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
- …
