192 research outputs found

    Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time

    Get PDF
    Given the growing number of available tools for modeling dynamic networks, the choice of a suitable model becomes central. The goal of this survey is to provide an overview of tie‐oriented dynamic network models. The survey is focused on introducing binary network models with their corresponding assumptions, advantages, and shortfalls. The models are divided according to generating processes, operating in discrete and continuous time. First, we introduce the temporal exponential random graph model (TERGM) and the separable TERGM (STERGM), both being time‐discrete models. These models are then contrasted with continuous process models, focusing on the relational event model (REM). We additionally show how the REM can handle time‐clustered observations, that is, continuous‐time data observed at discrete time points. Besides the discussion of theoretical properties and fitting procedures, we specifically focus on the application of the models on two networks that represent international arms transfers and email exchange, respectively. The data allow to demonstrate the applicability and interpretation of the network models

    The interplay of microscopic and mesoscopic structure in complex networks

    Get PDF
    Not all nodes in a network are created equal. Differences and similarities exist at both individual node and group levels. Disentangling single node from group properties is crucial for network modeling and structural inference. Based on unbiased generative probabilistic exponential random graph models and employing distributive message passing techniques, we present an efficient algorithm that allows one to separate the contributions of individual nodes and groups of nodes to the network structure. This leads to improved detection accuracy of latent class structure in real world data sets compared to models that focus on group structure alone. Furthermore, the inclusion of hitherto neglected group specific effects in models used to assess the statistical significance of small subgraph (motif) distributions in networks may be sufficient to explain most of the observed statistics. We show the predictive power of such generative models in forecasting putative gene-disease associations in the Online Mendelian Inheritance in Man (OMIM) database. The approach is suitable for both directed and undirected uni-partite as well as for bipartite networks

    Using Affiliation Networks to Study the Determinants of Multilateral Research Cooperation Some empirical evidence from EU Framework Programs in biotechnology

    Get PDF
    This paper studies multilateral cooperation networks among organizations and work on a two-mode representation to study the decision to participate in a consortium. Our objective is to explain the underlying processes that give rise to multilateral collaboration networks. Particularly, we are interested in how heterogeneity in organizations' attributes plays a part and in the geographical dimension of this formation process. We use the data on project proposals submitted to the 7th Framework Program (FP) in the area of Life sciences, Biotechnology and Biochemistry for Sustainable Non-Food. We employ exponential random graph models (p* models) (Frank and Strauss, 1986 ; Wasserman and Pattison, 1996) with node attributes (Agneessens et al., 2004), and we make use of extensions for affiliation networks (Wang et al., 2009). These models do not only enable handling variability in consortium sizes but also relax the assumption on tie/triad independence. We obtained some preliminary results indicating institutional types as a source of heterogeneity affecting participation decisions. Also, these initial results point out that organizations take their potential partners' participations in other projects into account in giving their decision ; organizations located in the core European countries tend to participate in the same project ; the tendency to preserve the composition of a consortium across projects and the tendency of organizations with the same institutional type to co-participate are not significant

    mspecLINE: bridging knowledge of human disease with the proteome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Public proteomics databases such as PeptideAtlas contain peptides and proteins identified in mass spectrometry experiments. However, these databases lack information about human disease for researchers studying disease-related proteins. We have developed mspecLINE, a tool that combines knowledge about human disease in MEDLINE with empirical data about the detectable human proteome in PeptideAtlas. mspecLINE associates diseases with proteins by calculating the semantic distance between annotated terms from a controlled biomedical vocabulary. We used an established semantic distance measure that is based on the co-occurrence of disease and protein terms in the MEDLINE bibliographic database.</p> <p>Results</p> <p>The mspecLINE web application allows researchers to explore relationships between human diseases and parts of the proteome that are detectable using a mass spectrometer. Given a disease, the tool will display proteins and peptides from PeptideAtlas that may be associated with the disease. It will also display relevant literature from MEDLINE. Furthermore, mspecLINE allows researchers to select proteotypic peptides for specific protein targets in a mass spectrometry assay.</p> <p>Conclusions</p> <p>Although mspecLINE applies an information retrieval technique to the MEDLINE database, it is distinct from previous MEDLINE query tools in that it combines the knowledge expressed in scientific literature with empirical proteomics data. The tool provides valuable information about candidate protein targets to researchers studying human disease and is freely available on a public web server.</p

    Bayesian statistical modelling of human protein interaction network incorporating protein disorder information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We present a statistical method of analysis of biological networks based on the exponential random graph model, namely p2-model, as opposed to previous descriptive approaches. The model is capable to capture generic and structural properties of a network as emergent from local interdependencies and uses a limited number of parameters. Here, we consider one global parameter capturing the density of edges in the network, and local parameters representing each node's contribution to the formation of edges in the network. The modelling suggests a novel definition of important nodes in the network, namely <it>social</it>, as revealed based on the local <it>sociality </it>parameters of the model. Moreover, the sociality parameters help to reveal organizational principles of the network. An inherent advantage of our approach is the possibility of hypotheses testing: <it>a priori </it>knowledge about biological properties of the nodes can be incorporated into the statistical model to investigate its influence on the structure of the network.</p> <p>Results</p> <p>We applied the statistical modelling to the human protein interaction network obtained with Y2H experiments. Bayesian approach for the estimation of the parameters was employed. We deduced <it>social </it>proteins, essential for the formation of the network, while incorporating into the model information on protein disorder. <it>Intrinsically disordered </it>are proteins which lack a well-defined three-dimensional structure under physiological conditions. We predicted the fold group (ordered or disordered) of proteins in the network from their primary sequences. The network analysis indicated that protein disorder has a positive effect on the connectivity of proteins in the network, but do not fully explains the interactivity.</p> <p>Conclusions</p> <p>The approach opens a perspective to study effects of biological properties of individual entities on the structure of biological networks.</p

    Cattle transhumance and agropastoral nomadic herding practices in central Cameroon

    Get PDF
    Abstract Background In sub-Saharan Africa, livestock transhumance represents a key adaptation strategy to environmental variability. In this context, seasonal livestock transhumance also plays an important role in driving the dynamics of multiple livestock infectious diseases. In Cameroon, cattle transhumance is a common practice during the dry season across all the main livestock production zones. Currently, the little recorded information of the migratory routes, grazing locations and nomadic herding practices adopted by pastoralists, limits our understanding of pastoral cattle movements in the country. GPS-tracking technology in combination with a questionnaire based-survey were used to study a limited pool of 10 cattle herds from the Adamawa Region of Cameroon during their seasonal migration, between October 2014 and May 2015. The data were used to analyse the trajectories and movement patterns, and to characterize the key animal health aspects related to this seasonal migration in Cameroon. Results Several administrative Regions of the country were visited by the transhumant herds over more than 6 months. Herds travelled between 53 and 170 km to their transhumance grazing areas adopting different strategies, some travelling directly to their destination areas while others having multiple resting periods and grazing areas. Despite their limitations, these are among the first detailed data available on transhumance in Cameroon. These reports highlight key livestock health issues and the potential for multiple types of interactions between transhumant herds and other domestic and wild animals, as well as with the formal livestock trading system. Conclusion Overall, these findings provide useful insights into transhumance patterns and into the related animal health implications recorded in Cameroon. This knowledge could better inform evidence-based approaches for designing infectious diseases surveillance and control measures and help driving further studies to improve the understanding of risks associated with livestock movements in the region

    Methods for visual mining of genomic and proteomic data atlases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing.</p> <p>Results</p> <p>This paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types.</p> <p>Conclusions</p> <p>The mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations. Providing linked task specific views that allow a user to start from points of interest (from diseases to single genes) enables targeted exploration of thousands of spectra and genomes. As the composition of the atlases changes, and our understanding of the biology increase, new tasks will continually arise. It is therefore important to provide the means to make the data available in a suitable manner in as short a time as possible. We have done this through the use of common visualization workflows, into which we rapidly deploy visual tools. These visualizations follow common metaphors where possible to assist users in understanding the displayed data. Rapid development of tools and task specific views allows researchers to mine large-scale data almost as quickly as it is produced. Ultimately these visual tools enable new inferences, new analyses and further refinement of the large scale data being provided in atlases such as PeptideAtlas and The Cancer Genome Atlas.</p
    • …
    corecore