57 research outputs found
The handbook for standardized field and laboratory measurements in terrestrial climate change experiments and observational studies (ClimEx)
1. Climate change is a world‐wide threat to biodiversity and ecosystem structure, functioning and services. To understand the underlying drivers and mechanisms, and to predict the consequences for nature and people, we urgently need better understanding of the direction and magnitude of climate change impacts across the soil–plant–atmosphere continuum. An increasing number of climate change studies are creating new opportunities for meaningful and high‐quality generalizations and improved process understanding. However, significant challenges exist related to data availability and/or compatibility across studies, compromising opportunities for data re‐use, synthesis and upscaling. Many of these challenges relate to a lack of an established ‘best practice’ for measuring key impacts and responses. This restrains our current understanding of complex processes and mechanisms in terrestrial ecosystems related to climate change.
2. To overcome these challenges, we collected best‐practice methods emerging from major ecological research networks and experiments, as synthesized by 115 experts from across a wide range of scientific disciplines. Our handbook contains guidance on the selection of response variables for different purposes, protocols for standardized measurements of 66 such response variables and advice on data management. Specifically, we recommend a minimum subset of variables that should be collected in all climate change studies to allow data re‐use and synthesis, and give guidance on additional variables critical for different types of synthesis and upscaling. The goal of this community effort is to facilitate awareness of the importance and broader application of standardized methods to promote data re‐use, availability, compatibility and transparency. We envision improved research practices that will increase returns on investments in individual research projects, facilitate second‐order research outputs and create opportunities for collaboration across scientific communities. Ultimately, this should significantly improve the quality and impact of the science, which is required to fulfil society's needs in a changing world
A Triple Test for Behavioral Economics Models and Public Health Policy
We propose a triple test to evaluate the usefulness of behavioral economics models for public health policy. Test 1 is whether the model provides reasonably new insights. Test 2 is on whether these have been properly applied to policy settings. Test 3 is whether they are corroborated by evidence. Where a test is not passed, this may point to directions for needed further research. We exemplify by considering the cases of social interactions models, self-control models and, in relation to health message framing, prospect theory; out of these, only a correctly applied prospect theory fully passes the tests at present
Geochemistry of neritic carbonates of ODP Hole 134-831B
Drilling at Bougainville Guyot (Ocean Drilling Program Site 831), New Hebrides Island Arc during Leg 134 revealed that 727.5 m of carbonate overlies an andesite basement. The carbonate cap at Site 831 consists of 20 m of pelagic carbonate overlying 707.5 m of neritic carbonates. The neritic section consists of ~230 m of largely unaltered aragonite sediment that overlies ~497 m of totally calcitized limestone. The deeper portion of the calcitized interval has been pervasively altered by diagenesis. Prior to this study the age distribution of sediments at Bougainville Guyot was poorly known because age diagnostic fossils are sparsely and discontinuously distributed in the sequence.
We have used Sr isotopes to provide temporal constraints on the deposition of carbonates at Site 831; these constraints are critical in reconstructing the vertical movement of Bougainville Guyot before its collision with the New Hebrides Island Arc. Overall, the chronostratigraphy of Bougainville Guyot can be subdivided into three intervals: (1) a Pleistocene interval (102.4 to 391.11 meters below sea floor [mbsf]); (2) a Miocene interval (410.31 to 669.53 mbsf); and (3) an Oligocene interval (678.83 to 727.50 mbsf). Strontium isotopic ages of samples increase with increasing depth in the carbonate sequence, except near the bottom of the sequence, where several samples exhibit a consistent reversed age vs. depth trend. Such age reversals are most likely the product of post-depositional rock-water interaction. Preliminary stable isotope data are consistent with diagenetic alteration in the marine and meteoric environments. Several abrupt decreases in d87Sr, and hence age, of sediments are recognized in the carbonate cap at Bougainville Guyot. These disconformities are most likely the product of subaerial exposure in response to relative sea-level fall. Indeed, Sr-isotope ages indicate that 2 to 9 m.y. of sediment deposition is missing across these d87Sr disconformities
Bactericidal/permeability-increasing protein attenuates systemic inflammation and acute lung injury in porcine lower limb ischemia-reperfusion injury.
OBJECTIVE: To investigate the role of recombinant bactericidal/permeability-increasing protein (rBPI(21)) in the attenuation of the sepsis syndrome and acute lung injury associated with lower limb ischemia–reperfusion (I/R) injury. SUMMARY BACKGROUND DATA: Gut-derived endotoxin has been implicated in the conversion of the sterile inflammatory response to a lethal sepsis syndrome after lower torso I/R injury. rBPI(21) is a novel antiendotoxin therapy with proven benefit in sepsis. METHODS: Anesthetized ventilated swine underwent midline laparotomy and bilateral external iliac artery occlusion for 2 hours followed by 2.5 hours of reperfusion. Two groups (n = 6 per group) were randomized to receive, by intravenous infusion over 30 minutes, at the start of reperfusion, either thaumatin, a control-protein preparation, at 2 mg/kg body weight, or rBPI(21) at 2 mg/kg body weight. A control group (n = 6) underwent laparotomy without further treatment and was administered thaumatin at 2 mg/kg body weight after 2 hours of anesthesia. Blood from a carotid artery cannula was taken every half-hour for arterial blood gas analysis. Plasma was separated and stored at −70°C for later determination of plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6 by bioassay, and IL-8 by enzyme-linked immunosorbent assay (ELISA), as a markers of systemic inflammation. Plasma endotoxin concentration was measured using ELISA. Lung tissue wet-to-dry weight ratio and myeloperoxidase concentration were used as markers of edema and neutrophil sequestration, respectively. Bronchoalveolar lavage protein concentration was measured by the bicinclinoic acid method as a measure of capillary-alveolar protein leak. The alveolar–arterial gradient was measured; a large gradient indicated impaired oxygen transport and hence lung injury. RESULTS: Bilateral hind limb I/R injury increased significantly intestinal mucosal acidosis, intestinal permeability, portal endotoxemia, plasma IL-6 concentrations, circulating phagocytic cell priming and pulmonary leukosequestration, edema, capillary-alveolar protein leak, and impaired gas exchange. Conversely, pigs treated with rBPI(21) 2 mg/kg at the onset of reperfusion had significantly reduced intestinal mucosal acidosis, portal endotoxin concentrations, and circulating phagocytic cell priming and had significantly less pulmonary edema, leukosequestration, and respiratory failure. CONCLUSIONS: Endotoxin transmigration across a hyperpermeable gut barrier, phagocytic cell priming, and cytokinemia are key events of I/R injury, sepsis, and pulmonary dysfunction. This study shows that rBPI(21) ameliorates these adverse effects and may provide a novel therapeutic approach for prevention of I/R-associated sepsis syndrome
- …