130 research outputs found
SO_2-rock interaction on Io 2. Interaction with pure SO_2
A Na-S mineral on the surface of Io is required to be the source of the famous atomic cloud. SO_2 is a confirmed atmospheric and surface constituent, and because of the rapid volcanic resurfacing rate, the SO_2 is buried within the crust, where at least occasionally, over many cycles of burial and eruption, it must contact silicate materials at midlevel crustal temperatures. Surface interaction experiments were performed for a wide variety of silicate compositions showing that interaction products of these with SO_2 could be observed at 1123 K on laboratory timescales, even in the absence of external redox agents. Not all experiments produced deposits that could be studied by scanning electron microscopy; some required the greater sensitivity of photoelectron spectroscopy (XPS). Characterization of the alteration products by XPS showed that both oxidized and reduced sulfur species were formed, indicating that a disproportionation mechanism producing a sulfate and a reduced S species although smaller amounts of interaction leading to Na_2SO_3 formation cannot be ruled out. The reduced sulfur species is best explained as elemental S which was independently documented for two compositions. Scanning electron microscopy studies for those compositions where reaction was extensive enough to be observed showed (1) Na_2SO_4 for a soda-lime composition, (2) a mixed Na-Ca-sulfate liquid and CaSO_4 for AbAnDi and a chondrule glass composition, and (3) Fe-sulfate for a natural obsidian. Infrared spectroscopy for the soda-lime glass composition showed peaks best explained by Na_2SO_4. We conclude that SO_2 disproportionation as well as direct formation from SO_3 under oxidizing conditions can produce Na_2SO_4 by interaction of SO_2 with silicates on Io, but Ca and Fe sulfates may form preferentially in more basaltic compositions. As highly oxidizing conditions may be unlikely for Io, the disproportionation mechanism may be more competitive on Io than it is in laboratory experiments. Very low rates of Na_2SO_4 production are required to supply the Io atomic cloud, so the interaction processes can be very inefficient
Exoplanet characterization using conditional invertible neural networks
The characterization of an exoplanet's interior is an inverse problem, which
requires statistical methods such as Bayesian inference in order to be solved.
Current methods employ Markov Chain Monte Carlo (MCMC) sampling to infer the
posterior probability of planetary structure parameters for a given exoplanet.
These methods are time consuming since they require the calculation of a large
number of planetary structure models. To speed up the inference process when
characterizing an exoplanet, we propose to use conditional invertible neural
networks (cINNs) to calculate the posterior probability of the internal
structure parameters. cINNs are a special type of neural network which excel in
solving inverse problems. We constructed a cINN using FrEIA, which was then
trained on a database of internal structure models to recover
the inverse mapping between internal structure parameters and observable
features (i.e., planetary mass, planetary radius and composition of the host
star). The cINN method was compared to a Metropolis-Hastings MCMC. For that we
repeated the characterization of the exoplanet K2-111 b, using both the MCMC
method and the trained cINN. We show that the inferred posterior probability of
the internal structure parameters from both methods are very similar, with the
biggest differences seen in the exoplanet's water content. Thus cINNs are a
possible alternative to the standard time-consuming sampling methods. Indeed,
using cINNs allows for orders of magnitude faster inference of an exoplanet's
composition than what is possible using an MCMC method, however, it still
requires the computation of a large database of internal structures to train
the cINN. Since this database is only computed once, we found that using a cINN
is more efficient than an MCMC, when more than 10 exoplanets are characterized
using the same cINN.Comment: 15 pages, 13 figures, submitted to Astronomy & Astrophysic
Volatiles in the Desert: Subtle Remote-sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt
Over the past decade members of the Dakhleh Oasis Project have studied enigmatic signatures in the Pleistocene geologic record of portions of the Dakhleh oasis and palaeo-oasis in Egypt's Western Desert [1,2]. In particular, Si-Ca-Al rich glass melt (Dakhleh Glass, Fig. 1) points to a catastrophic event between c.100,000-200,000 years ago [3] in this well-studied African savannah and freshwater lake Middle Stone Age environment [4,5]
Crater gradation in Gusev crater and Meridiani Planum, Mars
The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ∼400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters \u3e100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred
TESS Reveals A Short-Period Sub-Neptune Sibling (HD 86226c) To A Known Long-Period Giant Planet
The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (~1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm−3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the radius gap and the hot Neptune desert, HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition
Warm terrestrial planet with half the mass of Venus transiting a nearby star
The advent of a new generation of radial velocity instruments has allowed us to break the one Earth-mass barrier. We report a new milestone in this context with the detection of the lowest-mass planet measured so far using radial velocities: L 98-59 b, a rocky planet with half the mass of Venus. It is part of a system composed of three known transiting terrestrial planets (planets b to d). We announce the discovery of a fourth nontransiting planet with a minimum mass of 3.06_{-0.37}^{+0.33} MEarth and an orbital period of 12.796_{-0.019}^{+0.020} days and report indications for the presence of a fifth nontransiting terrestrial planet. With a minimum mass of 2.46_{-0.82}^{+0.66} MEarth and an orbital period 23.15_{-0.17}^{+0.60} days, this planet, if confirmed, would sit in the middle of the habitable zone of the L 98-59 system.
L 98-59 is a bright M dwarf located 10.6 pc away. Positioned at the border of the continuous viewing zone of the James Webb Space Telescope, this system is destined to become a corner stone for comparative exoplanetology of terrestrial planets. The three transiting planets have transmission spectrum metrics ranging from 49 to 255, which makes them prime targets for an atmospheric characterization with the James Webb Space Telescope, the Hubble Space Telescope, Ariel, or ground-based facilities such as NIRPS or ESPRESSO. With an equilibrium temperature ranging from 416 to 627 K, they offer a unique opportunity to study the diversity of warm terrestrial planets.
L 98-59 b and c have densities of 3.6_{-1.5}^{+1.4} and 4.57_{-0.85}^{+0.77} this http URL^{-3}, respectively, and have very similar bulk compositions with a small iron core that represents only 12 to 14 % of the total mass, and a small amount of water. However, with a density of 2.95_{-0.51}^{+0.79} this http URL^{-3} and despite a similar core mass fraction, up to 30 % of the mass of L 98-59 d might be water
TOI-824 b: A New Planet On The Lower Edge Of The Hot Neptune Desert
We report the detection of a transiting hot Neptune exoplanet orbiting TOI-824 (SCR J1448-5735), a nearby (d = 64 pc) K4V star, using data from the Transiting Exoplanet Survey Satellite. The newly discovered planet has a radius Rp = 2.93 ± 0.20 R⊕ and an orbital period of 1.393 days. Radial velocity measurements using the Planet Finder Spectrograph and the High Accuracy Radial velocity Planet Searcher spectrograph confirm the existence of the planet, and we estimate its mass to be 18.47 ± 1.84 M⊕. The planet\u27s mean density is ρp = 4.03 (+0.98)/(-0.78) g cm⁻³, making it more than twice as dense as Neptune. TOI-824 b\u27s high equilibrium temperature makes the planet likely to have a cloud-free atmosphere, and thus it is an excellent candidate for follow-up atmospheric studies. The detectability of TOI-824 b\u27s atmosphere from both ground and space is promising and could lead to the detailed characterization of the most irradiated small planet at the edge of the hot Neptune desert that has retained its atmosphere to date
Attitudes towards treatment among patients suffering from sleep disorders. A Latin American survey
BACKGROUND: Although sleep disorders are common, they frequently remain unnoticed by the general practitioner. Few data are available about the willingness and reasons of patients with sleep disturbances to seek for medical assistance. METHODS: The results of a cross-sectional community-based multinational survey in three major Latin American urban areas, i.e. Buenos Aires, Mexico City and Sao Paulo, are reported. Two-hundred subjects suffering sleep disturbances and 100 non-sufferers were selected from the general population in each city (total number: 600 sufferers vs. 300 non-sufferers). A structured interview was conducted, sleep characteristics, feelings about sleep disturbances and strategies to cope with those problems being recorded. Data were analyzed by employing either t-test or analysis of variance (ANOVA) to the Z-transformed proportions. RESULTS: 22.7 ± 3.5 % (mean ± SEM) of subjects reported to suffer from sleep disturbances every night. About 3 out of 4 (74.2 ± 2.0 %) considered their disorder as mild and were not very concerned about it. Only 31 ± 2 % of sufferers reported to have sought for medical help. Although 45 ± 2 % of sufferers reported frequent daily sleepiness, trouble to remember things, irritability and headaches, they did not seek for medical assistance. Among those patients who saw a physician with complaints different from sleep difficulties only 1 out of 3 (33 ± 2 % of patients) were asked about quality of their sleep by the incumbent practitioner. Strategies of patients to cope with sleep problems included specific behaviors (taking a warm bath, reading or watching TV) (44 ± 1.6 %), taking herbal beverages (17 ± 1.2 %) or taking sleeping pills (10 ± 1.1 %). Benzodiazepines were consumed by 3 ± 0.6 % of sufferers. CONCLUSION: Public educational campaigns on the consequences of sleep disorders and an adequate training of physicians in sleep medicine are needed to educate both the public and the general practitioners about sleep disorders
TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet
The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (~1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 ± 0.08 R⊕ and a mass of M⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm−3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap" and the "hot Neptune desert," HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition
Field reconnaissance geologic mapping of the Columbia Hills, Mars, based on Mars Exploration Rover Spirit and MRO HiRISE observations
Chemical, mineralogic, and lithologic ground truth was acquired for the first time on Mars in terrain units mapped using orbital Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (MRO HiRISE) image data. Examination of several dozen outcrops shows that Mars is geologically complex at meter length scales, the record of its geologic history is well exposed, stratigraphic units may be identified and correlated across significant areas on the ground, and outcrops and geologic relationships between materials may be analyzed with techniques commonly employed in terrestrial field geology. Despite their burial during the course of Martian geologic time by widespread epiclastic materials, mobile fines, and fall deposits, the selective exhumation of deep and well‐preserved geologic units has exposed undisturbed outcrops, stratigraphic sections, and structural information much as they are preserved and exposed on Earth. A rich geologic record awaits skilled future field investigators on Mars. The correlation of ground observations and orbital images enables construction of a corresponding geologic reconnaissance map. Most of the outcrops visited are interpreted to be pyroclastic, impactite, and epiclastic deposits overlying an unexposed substrate, probably related to a modified Gusev crater central peak. Fluids have altered chemistry and mineralogy of these protoliths in degrees that vary substantially within the same map unit. Examination of the rocks exposed above and below the major unconformity between the plains lavas and the Columbia Hills directly confirms the general conclusion from remote sensing in previous studies over past years that the early history of Mars was a time of more intense deposition and modification of the surface. Although the availability of fluids and the chemical and mineral activity declined from this early period, significant later volcanism and fluid convection enabled additional, if localized, chemical activity.Additional co-authors: D DesMarais, M Schmidt, NA Cabrol, A Haldemann, Kevin W Lewis, AE Wang, D Blaney, B Cohen, A Yen, J Farmer, R Gellert, EA Guinness, KE Herkenhoff, JR Johnson, G Klingelhöfer, A McEwen, JW Rice Jr, M Rice, P deSouza, J Hurowit
- …