135 research outputs found

    Baryon Magnetic Moments in Relativistic Quark Models

    Full text link
    It is shown that the phenomenological description of the baryon magnetic moments in the quark model carries over to the Poincar\'e covariant extension of the model. This applies to all the three common forms of relativistic kinematics with structureless constituent currents, which are covariant under the corresponding kinematic subgroups. In instant and front form kinematics the calculated magnetic moments depend strongly on the constituent masses, while in point form kinematics the magnetic moments are fairly insensitive to both the quark masses and the wave function model. The baryon charge radii and magnetic moments are determined in the different forms of kinematics for the light-flavor, strange and charm hyperons. The wave function model is determined by a fit to the electromagnetic form factor of the proton.Comment: Six references and one paragraph adde

    Multimodal imaging of thyroid cancer

    Get PDF
    Purpose of review Thyroid cancer is the most common endocrine cancer in adults with rising incidence. Challenges in imaging thyroid cancer are twofold: distinguishing thyroid cancer from benign thyroid nodules, which occur in 50% of the population over 50 years; and correct staging of thyroid cancer to facilitate appropriate radical surgery in a single session. The clinical management of thyroid cancer patients has been covered in detail by the 2015 guidelines of the American Thyroid Association (ATA). The purpose of this review is to state the principles underlying optimal multimodal imaging of thyroid cancer and aid clinicians in avoiding important pitfalls. Recent findings Recent additions to the literature include assessment of ultrasound-based scoring systems to improve selection of nodules for fine needle biopsy (FNB) and the evaluation of new radioactive tracers for imaging thyroid cancer. Summary The mainstay of diagnosing thyroid cancer is thyroid ultrasound with ultrasound-guided FNB. Contrast-enhanced computed tomography and PET with [18F]-fluorodeoxyglucose (FDG) and MRI are reserved for advanced and/or recurrent cases of differentiated thyroid cancer and anaplastic thyroid cancer, while [18F]FDOPA and [68Ga]DOTATOC are the preferred tracers for medullary thyroid cancer.publishedVersio

    Action planning and the timescale of evidence accumulation

    Get PDF
    Perceptual decisions are based on the temporal integration of sensory evidence for different states of the outside world. The timescale of this integration process varies widely across behavioral contexts and individuals, and it is diagnostic for the underlying neural mechanisms. In many situations, the decision-maker knows the required mapping between perceptual evidence and motor response (henceforth termed “sensory-motor contingency”) before decision formation. Here, the integrated evidence can be directly translated into a motor plan and, indeed, neural signatures of the integration process are evident as build-up activity in premotor brain regions. In other situations, however, the sensory-motor contingencies are unknown at the time of decision formation. We used behavioral psychophysics and computational modeling to test if knowledge about sensory-motor contingencies affects the timescale of perceptual evidence integration. We asked human observers to perform the same motion discrimination task, with or without trial-to-trial variations of the mapping between perceptual choice and motor response. When the mapping varied, it was either instructed before or after the stimulus presentation. We quantified the timescale of evidence integration under these different sensory-motor mapping conditions by means of two approaches. First, we analyzed subjects’ discrimination threshold as a function of stimulus duration. Second, we fitted a dynamical decision-making model to subjects’ choice behavior. The results from both approaches indicated that observers (i) integrated motion information for several hundred ms, (ii) used a shorter than optimal integration timescale, and (iii) used the same integration timescale under all sensory-motor mappings. We conclude that the mechanisms limiting the timescale of perceptual decisions are largely independent from long-term learning (under fixed mapping) or rapid acquisition (under variable mapping) of sensory-motor contingencies. This conclusion has implications for neurophysiological and neuroimaging studies of perceptual decision-making

    Albumin and mammalian cell culture: implications for biotechnology applications

    Get PDF
    Albumin has a long historical involvement in design of media for the successful culture of mammalian cells, in both the research and commercial fields. The potential application of albumins, bovine or human serum albumin, for cell culture is a by-product of the physico-chemical, biochemical and cell-specific properties of the molecule. In this review an analysis of these features of albumin leads to a consideration of the extracellular and intracellular actions of the molecule, and importantly the role of its interactions with numerous ligands or bioactive factors that influence the growth of cells in culture: these include hormones, growth factors, lipids, amino acids, metal ions, reactive oxygen and nitrogen species to name a few. The interaction of albumin with the cell in relation to these co-factors has a potential impact on metabolic and biosynthetic activity, cell proliferation and survival. Application of this knowledge to improve the performance in manufacturing biotechnology and in the emerging uses of cell culture for tissue engineering and stem cell derived therapies is an important prospect

    Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice

    Get PDF
    Platelets derived from aged (reproductively senescent) female mice with genetic deletion of estrogen receptor beta (βER) are more thrombogenic than those from age-matched wild-type (WT) mice. Intracellular processes contributing to this increased thrombogenicity are not known. Experiments were designed to identify subcellular localization of estrogen receptors and evaluate both glycolytic and mitochondrial energetic processes which might affect platelet activation. Platelets and blood from aged (22–24 months) WT and estrogen receptor β knockout (βERKO) female mice were used in this study. Body, spleen weight, and serum concentrations of follicle-stimulating hormone and 17β-estradiol were comparable between WT and βERKO mice. Number of spontaneous deaths was greater in the βERKO colony (50% compared to 30% in WT) over the course of 24 months. In resting (nonactivated) platelets, estrogen receptors did not appear to colocalize with mitochondria by immunostaining. Lactate production and mitochondrial membrane potential of intact platelets were similar in both groups of mice. However, activities of NADH dehydrogenase, cytochrome bc1 complex, and cytochrome c oxidase of the electron transport chain were reduced in mitochondria isolated from platelets from βERKO compared to WT mice. There were a significantly higher number of phosphatidylserine-expressing platelet-derived microvesicles in the plasma and a greater thrombin-generating capacity in βERKO compared to WT mice. These results suggest that deficiencies in βER affect energy metabolism of platelets resulting in greater production of circulating thrombogenic microvesicles and could potentially explain increased predisposition to thromboembolism in some elderly females

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF

    Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up

    Get PDF
    The next Galactic core-collapse supernova (CCSN) presents a once-in-a-lifetime opportunity to make astrophysical measurements using neutrinos, gravitational waves, and electromagnetic radiation. CCSNe local to the Milky Way are extremely rare, so it is paramount that detectors are prepared to observe the signal when it arrives. The IceCube Neutrino Observatory, a gigaton water Cherenkov detector below the South Pole, is sensitive to the burst of neutrinos released by a Galactic CCSN at a level >10σ. This burst of neutrinos precedes optical emission by hours to days, enabling neutrinos to serve as an early warning for follow-up observation. IceCube\u27s detection capabilities make it a cornerstone of the global network of neutrino detectors monitoring for Galactic CCSNe, the SuperNova Early Warning System (SNEWS 2.0). In this contribution, we describe IceCube\u27s sensitivity to Galactic CCSNe and strategies for operational readiness, including "fire drill" data challenges. We also discuss coordination with SNEWS 2.0

    All-Energy Search for Solar Atmospheric Neutrinos with IceCube

    Get PDF
    The interaction of cosmic rays with the solar atmosphere generates a secondary flux of mesons that decay into photons and neutrinos – the so-called solar atmospheric flux. Although the gamma-ray component of this flux has been observed in Fermi-LAT and HAWC Observatory data, the neutrino component remains undetected. The energy distribution of those neutrinos follows a soft spectrum that extends from the GeV to the multi-TeV range, making large Cherenkov neutrino telescopes a suitable for probing this flux. In this contribution, we will discuss current progress of a search for the solar neutrino flux by the IceCube Neutrino Observatory using all available data since 2011. Compared to the previous analysis which considered only high-energy muon neutrino tracks, we will additionally consider events produced by all flavors of neutrinos down to GeV-scale energies. These new events should improve our analysis sensitivity since the flux falls quickly with energy. Determining the magnitude of the neutrino flux is essential, since it is an irreducible background to indirect solar dark matter searches
    corecore