282 research outputs found

    Generalized Calogero models through reductions by discrete symmetries

    Full text link
    We construct generalizations of the Calogero-Sutherland-Moser system by appropriately reducing a classical Calogero model by a subset of its discrete symmetries. Such reductions reproduce all known variants of these systems, including some recently obtained generalizations of the spin-Sutherland model, and lead to further generalizations of the elliptic model involving spins with SU(n) non-invariant couplings.Comment: 14 pages, LaTeX, no figure

    Approximate probabilistic verification of hybrid systems

    Full text link
    Hybrid systems whose mode dynamics are governed by non-linear ordinary differential equations (ODEs) are often a natural model for biological processes. However such models are difficult to analyze. To address this, we develop a probabilistic analysis method by approximating the mode transitions as stochastic events. We assume that the probability of making a mode transition is proportional to the measure of the set of pairs of time points and value states at which the mode transition is enabled. To ensure a sound mathematical basis, we impose a natural continuity property on the non-linear ODEs. We also assume that the states of the system are observed at discrete time points but that the mode transitions may take place at any time between two successive discrete time points. This leads to a discrete time Markov chain as a probabilistic approximation of the hybrid system. We then show that for BLTL (bounded linear time temporal logic) specifications the hybrid system meets a specification iff its Markov chain approximation meets the same specification with probability 11. Based on this, we formulate a sequential hypothesis testing procedure for verifying -approximately- that the Markov chain meets a BLTL specification with high probability. Our case studies on cardiac cell dynamics and the circadian rhythm indicate that our scheme can be applied in a number of realistic settings

    Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans.

    Get PDF
    In Caenorhabditis elegans, the AWC neurons are thought to deploy a cGMP signaling cascade in the detection of and response to AWC sensed odors. Prolonged exposure to an AWC sensed odor in the absence of food leads to reversible decreases in the animal's attraction to that odor. This adaptation exhibits two stages referred to as short-term and long-term adaptation. Previously, the protein kinase G (PKG), EGL-4/PKG-1, was shown necessary for both stages of adaptation and phosphorylation of its target, the beta-type cyclic nucleotide gated (CNG) channel subunit, TAX-2, was implicated in the short term stage. Here we uncover a novel role for the CNG channel subunit, CNG-3, in short term adaptation. We demonstrate that CNG-3 is required in the AWC for adaptation to short (thirty minute) exposures of odor, and contains a candidate PKG phosphorylation site required to tune odor sensitivity. We also provide in vivo data suggesting that CNG-3 forms a complex with both TAX-2 and TAX-4 CNG channel subunits in AWC. Finally, we examine the physiology of different CNG channel subunit combinations

    Novel Quantum States of the Rational Calogero Models Without the Confining Interaction

    Get PDF
    We show that the N-particle A_{N-1} and B_N rational Calogero models without the harmonic interaction admit a new class of bound and scattering states. These states owe their existence to the self-adjoint extensions of the corresponding Hamiltonians, labelled by a real parameter z. It is shown that the new states appear for all values of N and for specific ranges of the coupling constants. Moreover, they are shown to exist even in the excited sectors of the Calogero models. The self-adjoint extension generically breaks the classical scaling symmetry, leading to quantum mechanical scaling anomaly. The scaling symmetry can however be restored for certain values of the parameter z. We also generalize these results for many particle systems with classically scale invariant long range interactions in arbitrary dimensions.Comment: Latex file, 21 pages; minor changes in text, some references added, to appear in Nucl. Phys.

    Interpain A, a Cysteine Proteinase from Prevotella intermedia, Inhibits Complement by Degrading Complement Factor C3

    Get PDF
    Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the α-chain of C3—the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia

    Acquisition of Complement Inhibitor Serine Protease Factor I and Its Cofactors C4b-Binding Protein and Factor H by Prevotella intermedia

    Get PDF
    Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases

    Chronic Fluid Flow Is an Environmental Modifier of Renal Epithelial Function

    Get PDF
    Although solitary or sensory cilia are present in most cells of the body and their existence has been known since the sixties, very little is been known about their functions. One suspected function is fluid flow sensing- physical bending of cilia produces an influx of Ca++, which can then result in a variety of activated signaling pathways. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a progressive disease, typically appearing in the 5th decade of life and is one of the most common monogenetic inherited human diseases, affecting approximately 600,000 people in the United States. Because ADPKD is a slowly progressing disease, I asked how fluid flow may act, via the primary cilium, to alter epithelial physiology during the course of cell turnover. I performed an experiment to determine under what conditions fluid flow can result in a change of function of renal epithelial tissue. A wildtype epithelial cell line derived the cortical collecting duct of a heterozygous offspring of the Immortomouse (Charles River Laboratory) was selected as our model system. Gentle orbital shaking was used to induce physiologically relevant fluid flow, and periodic measurements of the transepithelial Sodium current were performed. At the conclusion of the experiment, mechanosensitive proteins of interest were visualized by immunostaining. I found that fluid flow, in itself, modifies the transepithelial sodium current, cell proliferation, and the actin cytoskeleton. These results significantly impact the understanding of both the mechanosensation function of primary cilia as well as the understanding of ADPKD disease progression

    Re-Infection Outcomes following One- and Two-Stage Surgical Revision of Infected Hip Prosthesis:A Systematic Review and Meta-Analysis

    Get PDF
    The two-stage revision strategy has been claimed as being the "gold standard" for treating prosthetic joint infection. The one-stage revision strategy remains an attractive alternative option; however, its effectiveness in comparison to the two-stage strategy remains uncertain.To compare the effectiveness of one- and two-stage revision strategies in treating prosthetic hip infection, using re-infection as an outcome.Systematic review and meta-analysis.MEDLINE, EMBASE, Web of Science, Cochrane Library, manual search of bibliographies to March 2015, and email contact with investigators.Cohort studies (prospective or retrospective) conducted in generally unselected patients with prosthetic hip infection treated exclusively by one- or two-stage revision and with re-infection outcomes reported within two years of revision. No clinical trials were identified.Data were extracted by two independent investigators and a consensus was reached with involvement of a third. Rates of re-infection from 38 one-stage studies (2,536 participants) and 60 two-stage studies (3,288 participants) were aggregated using random-effect models after arcsine transformation, and were grouped by study and population level characteristics.In one-stage studies, the rate (95% confidence intervals) of re-infection was 8.2% (6.0-10.8). The corresponding re-infection rate after two-stage revision was 7.9% (6.2-9.7). Re-infection rates remained generally similar when grouped by several study and population level characteristics. There was no strong evidence of publication bias among contributing studies.Evidence from aggregate published data suggest similar re-infection rates after one- or two-stage revision among unselected patients. More detailed analyses under a broader range of circumstances and exploration of other sources of heterogeneity will require collaborative pooling of individual participant data.PROSPERO 2015: CRD42015016559
    • …
    corecore