Hybrid systems whose mode dynamics are governed by non-linear ordinary
differential equations (ODEs) are often a natural model for biological
processes. However such models are difficult to analyze. To address this, we
develop a probabilistic analysis method by approximating the mode transitions
as stochastic events. We assume that the probability of making a mode
transition is proportional to the measure of the set of pairs of time points
and value states at which the mode transition is enabled. To ensure a sound
mathematical basis, we impose a natural continuity property on the non-linear
ODEs. We also assume that the states of the system are observed at discrete
time points but that the mode transitions may take place at any time between
two successive discrete time points. This leads to a discrete time Markov chain
as a probabilistic approximation of the hybrid system. We then show that for
BLTL (bounded linear time temporal logic) specifications the hybrid system
meets a specification iff its Markov chain approximation meets the same
specification with probability 1. Based on this, we formulate a sequential
hypothesis testing procedure for verifying -approximately- that the Markov
chain meets a BLTL specification with high probability. Our case studies on
cardiac cell dynamics and the circadian rhythm indicate that our scheme can be
applied in a number of realistic settings