265 research outputs found

    Vertex functions for d-wave mesons in the light-front approach

    Full text link
    While the light-front quark model (LFQM) is employed to calculate hadronic transition matrix elements, the vertex functions must be pre-determined. In this work we derive the vertex functions for all d-wave states in this model. Especially, since both of 3D1^3D_1 and 3S1^3S_1 are 11^{--} mesons, the Lorentz structures of their vertex functions are the same. Thus when one needs to study the processes where 3D1^3D_1 is involved, all the corresponding formulas for 3S1^3S_1 states can be directly applied, only the coefficient of the vertex function should be replaced by that for 3D1^3D_1. The results would be useful for studying the newly observed resonances which are supposed to be d-wave mesons and furthermore the possible 2S-1D mixing in ψ\psi' with the LFQM.Comment: 12 pages, 2 figures, some typos corrected and more discussions added. Accepted by EPJ

    Proton-Antiproton Annihilation into a Lambda_c-Antilambda_c Pair

    Full text link
    The process p-pbar -> Lambda_c-Antilambda_c is investigated within the handbag approach. It is shown that the dominant dynamical mechanism, characterized by the partonic subprocess u-ubar -> c-cbar factorizes in the sense that only the subprocess contains highly virtual partons, a gluon to lowest order of perturbative QCD, while the hadronic matrix elements embody only soft scales and can be parameterized in terms of helicity flip and non-flip generalized parton distributions. Modelling these parton distributions by overlaps of light-cone wave functions for the involved baryons we are able to predict cross sections and spin correlation parameters for the process of interest.Comment: 39 pages, 7 figures, problems with printout of figures resolved, Ref. 33 and referring sentences in section 4 change

    Search for Bc(ns)B_c(ns) via the Bc(ns)Bc(ms)π+πB_c(ns)\to B_c(ms)\pi^+\pi^- transition at LHCb and Z0Z_0 factory

    Full text link
    It is interesting to study the characteristics of the whole family of BcB_c which contains two different heavy flavors. LHC and the proposed Z0Z^0 factory provide an opportunity because a large database on the BcB_c family will be achieved. BcB_c and its excited states can be identified via their decay modes. As suggested by experimentalists, Bc(ns)Bc+γB_c^*(ns)\to B_c+\gamma is not easy to be clearly measured, instead, the trajectories of π+\pi^+ and π\pi^- occurring in the decay of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- (n>mn>m) can be unambiguously identified, thus the measurement seems easier and more reliable, therefore this mode is more favorable at early running stage of LHCb and the proposed Z0Z^0 factory. In this work, we calculate the rate of Bc(ns)Bc(ms)+π+πB_c(ns)\to B_c(ms)+\pi^+\pi^- in terms of the QCD multipole-expansion and the numerical results indicate that the experimental measurements with the luminosity of LHC and Z0Z^0 factory are feasible.Comment: 12 pages, 1 figures and 4 tables, acceptted by SCIENCE CHINA Physics, Mechanics & Astronomy (Science in China Series G

    Role of the Brans-Dicke scalar in the holographic description of dark energy

    Full text link
    We study cosmological application of the holographic energy density in the Brans-Dicke theory. Considering the holographic energy density as a dynamical cosmological constant, it is more natural to study it in the Brans-Dicke theory than in general relativity. Solving the Friedmann and Brans-Dicke field equations numerically, we clarify the role of Brans-Dicke field during evolution of the universe. When the Hubble horizon is taken as the IR cutoff, the equation of state (w_{\Lmd}) for the holographic energy density is determined to be 5/3 when the Brans-Dicke parameter \omg goes infinity. This means that the Brans-Dicke field plays a crucial role in determining the equation of state. For the particle horizon IR cutoff, the Brans-Dicke scalar mediates a transition from w_{\Lmd} = -1/3 (past) to w_{\Lmd} = 1/3 (future). If a dust matter is present, it determines future equation of state. In the case of future event horizon cutoff, the role of the Brans-Dicke scalar and dust matter are turned out to be trivial, whereas the holographic energy density plays an important role as a dark energy candidate with w_{\Lmd} =-1.Comment: 10pages, 3figures, version to appear in PL

    Understanding the newly observed Y(4008) by Belle

    Full text link
    Very recently a new enhancement around 4.05 GeV was observed by Belle experiment. In this short note, we discuss some possible assignments for this enhancement, i.e. ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state. In these two assignments, Y(4008) can decay into J/ψπ0π0J/\psi\pi^0\pi^0 with comparable branching ratio with that of Y(4008)J/ψπ+πY(4008)\to J/\psi\pi^+\pi^-. Thus one suggests high energy experimentalists to look for Y(4008) in J/ψπ0π0J/\psi\pi^0\pi^0 channel. Furthermore one proposes further experiments to search missing channel DDˉD\bar{D}, DDˉ+h.c.D\bar{D}^*+h.c. and especially χcJπ+ππ0\chi_{cJ}\pi^+\pi^-\pi^0 and ηcπ+ππ0\eta_c\pi^+\pi^-\pi^0, which will be helpful to distinguish ψ(3S)\psi(3S) and DDˉD^*\bar{D}^* molecular state assignments for this new enhancement.Comment: 4 pages, 5 figures. Typos correcte

    The retinal microcirculation in migraine: The Rotterdam Study

    Get PDF
    Background: To explore the role of microvascular pathology in migraine, we investigated the association between migraine and retinal microvascular damage. Methods: We included 3270 participants (age ≥ 45 years, 63% women) from the population-based Rotterdam Study (2006–2009). Participants with migraine were identified using a validated questionnaire based on ICHD-II criteria (n = 562). Retinopathy signs were graded on fundus photographs. Retinal arteriolar and venular caliber were measured by semi-automatic assessment of fundus photographs. Associations of migraine with retinopathy and retinal microvascular calibers were examined using logistic and linear regression models, respectively, adjusting for age, sex, and cardiovascular risk factors. Results: Migraine was not associated with the presence of retinopathy (odds ratio (OR): 1.09, 95% confidence interval (CI) 0.62; 1.92). In the fully adjusted model, adjusting for the companion vessel, persons with migraine did not differ in retina

    Memory effect in the deposition of C20 fullerenes on a diamond surface

    Get PDF
    In this paper, the deposition of C-20 fullerenes on a diamond (001)-(2x1) surface and the fabrication of C-20 thin film at 100 K were investigated by a molecular dynamics (MD) simulation using the many-body Brenner bond order potential. First, we found that the collision dynamic of a single C-20 fullerene on a diamond surface was strongly dependent on its impact energy. Within the energy range 10-45 eV, the C-20 fullerene chemisorbed on the surface retained its free cage structure. This is consistent with the experimental observation, where it was called the memory effect in "C-20-type" films [P. Melion , Int. J. Mod. B 9, 339 (1995); P. Milani , Cluster Beam Synthesis of Nanostructured Materials (Springer, Berlin, 1999)]. Next, more than one hundred C-20 (10-25 eV) were deposited one after the other onto the surface. The initial growth stage of C-20 thin film was observed to be in the three-dimensional island mode. The randomly deposited C-20 fullerenes stacked on diamond surface and acted as building blocks forming a polymerlike structure. The assembled film was also highly porous due to cluster-cluster interaction. The bond angle distribution and the neighbor-atom-number distribution of the film presented a well-defined local order, which is of sp(3) hybridization character, the same as that of a free C-20 cage. These simulation results are again in good agreement with the experimental observation. Finally, the deposited C-20 film showed high stability even when the temperature was raised up to 1500 K

    Partial Wave Analysis of J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/ψγ(K+Kπ+π)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The KKˉK^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width 500\sim 500 MeV. There is further evidence for a 2+2^{-+} component peaking at 2.55 GeV. The non-KKˉK^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from KKˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Study on the effects of the light CP-odd Higgs via the leptonic decays of pseudoscalar mesons

    Full text link
    To explain the anomalously large decay rate of Σ+p+μ+μ\Sigma^+\to p+\mu^+\mu^-, it was proposed that a new mechanism where a light CP-odd pseudoscalar boson of mA10=214.3m_{A_1^0}=214.3 MeV makes a crucial contribution. Later, some authors have studied the transition π0e+e\pi^0\to e^+e^- and ΥγA10\Upsilon\to \gamma A_1^0 in terms of the same mechanism and their result indicates that with the suggested mass one cannot fit the data. This discrepancy might be caused by experimental error of Σ+p+μ+μ\Sigma^+\to p+\mu^+\mu^- because there were only a few events. Whether the mechanism is a reasonable one motivates us to investigate the transitions π0e+e;η(η)μ+μ;ηcμ+μ;ηbτ+τ\pi^0\to e^+e^-; \eta (\eta^\prime)\to \mu^+\mu^-; \eta_c\to \mu^+\mu^-; \eta_b\to\tau^+\tau^- within the same framework. It is noted that for π0e+e\pi^0\to e^+e^-, the standard model (SM) prediction is smaller than the data, whereas the experimental central value of ημ+μ\eta \to \mu^+\mu^- is also above the SM prediction. It means that there should be extra contributions from other mechanisms and the contribution of A10A_1^0 may be a possible one. Theoretically calculating the branching ratios of the concerned modes, we would check if we can obtain a universal mass for A10A_1^0 which reconcile the theoretical predictions and data for all the modes. Unfortunately, we find that it is impossible to have such a mass with the same coupling g|g_\ell|. Therefore we conclude that the phenomenology does not favor such a light A10A_1^0, even though a small window is still open.Comment: 17 pages, 7 figures, 2 table

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    corecore