46 research outputs found

    Um algoritmo baseado em evolução diferencial para problemas de otimização estrutural multiobjetivo com restrições

    Get PDF
    ResumoProblemas de otimização estrutural visam o aumento do desempenho da estrutura e a diminuição de seus custos garantindo, entretanto, os requisitos de segurança aplicáveis. Devido à natureza conflitante desses aspectos, a formulação de um problema de otimização estrutural como multiobjetivo é natural, embora pouco frequente, e tem a vantagem de apresentar um conjunto diversificado de soluções ao(s) tomador(es) de decisão. A literatura mostra que os algoritmos evolucionários (AE) são eficazes na obtenção de soluções em problemas de otimização multiobjetivo e que aqueles baseados em evolução diferencial (ED) são eficientes na resolução de problemas de otimização estrutural mono-objetivo, especialmente os que utilizam codificação real em suas variáveis de projeto. Por outro lado, nota-se a ausência da aplicação da ED na versão multiobjetivo desses problemas. Esse artigo apresenta uma análise do desempenho de um algoritmo baseado em ED em cinco exemplos de problemas de otimização estrutural multiobjetivo. Os resultados obtidos são comparados aos encontrados na literatura, indicando o potencial do algoritmo proposto.AbstractStructural optimization problems aim at increasing the performance of the structure while decreasing its costs guaranteeing, however, the applicable safety requirements. As these aspects are conflicting, the formulation of the structural optimization problem as multiobjective is natural but uncommon, and has the advantage of presenting a diverse set of solutions to the decision maker(s). The literature shows that Evolutionary Algorithms (EAs) are effective to obtain solutions in multiobjective optimization problems, and that the Differential Evolution (DE) based ones are efficient when solving structural mono-objective structural optimization problems, specially those with a real encoding of the design variables. On the other hand, one can note that DE has not yet been applied to the multiobjective version of these problems. This article presents a performance analysis of a DE-based algorithm in five multiobjective structural optimization problems. The obtained results are compared to those found in the literature, and the comparisons indicate the potential of the proposed algorithm

    Learning Dynamical Systems Using Standard Symbolic Regression

    Full text link

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore