24 research outputs found

    Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=13TeV

    Get PDF
    A search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state is presented. The analysis is based on proton-proton collision data recorded by the CMS detector in 2016–2018 at a centre-of-mass energy of 13 TeV at the CERN LHC, corresponding to an integrated luminosity of 138 fb−1. The search is sensitive to resonances with masses between 1.3 and 6TeV, decaying to bosons that are highly Lorentz-boosted such that each of the bosons forms a single large-radius jet. Machine learning techniques are employed to identify such jets. No significant excess over the estimated standard model background is observed. A maximum local significance of 3.6 standard deviations, corresponding to a global significance of 2.3 standard deviations, is observed at masses of 2.1 and 2.9 TeV. In a heavy vector triplet model, spin-1 Z′ and W′ resonances with masses below 4.8TeV are excluded at the 95% confidence level (CL). These limits are the most stringent to date. In a bulk graviton model, spin-2 gravitons and spin-0 radions with masses below 1.4 and 2.7TeV, respectively, are excluded at 95% CL. Production of heavy resonances through vector boson fusion is constrained with upper cross section limits at 95% CL as low as 0.1 fb. © 2023 The Author(s

    Search for a heavy composite Majorana neutrino in events with dilepton signatures from proton-proton collisions at √s=13 Tev

    Get PDF
    Results are presented of a search for a heavy Majorana neutrino N ⠃ decaying into two same-flavor leptons ⠃ (electrons or muons) and a quark-pair jet. A model is considered in which the N ⠃ is an excited neutrino in a compositeness scenario. The analysis is performed using a sample of proton-proton collisions at & RADIC;s = 13 TeV recorded by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of 138 fb-1. The data are found to be in agreement with the standard model prediction. For the process in which the N ⠃ is produced in association with a lepton, followed by the decay of the N ⠃ to a same-flavor lepton and a quark pair, an upper limit at 95% confidence level on the product of the cross section and branching fraction is obtained as a function of the N ⠃ mass mN ⠃ and the compositeness scale ⠄. For this model the data exclude the existence of Ne (N & mu;) for mN ⠃ below 6.0 (6.1) TeV, at the limit where mN ⠃ is equal to ⠄. For mN ⠃ N 1 TeV, values of ⠄ less than 20 (23) TeV are excluded. These results represent a considerable improvement in sensitivity, covering a larger parameter space than previous searches in pp collisions at 13 TeV.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3

    Search for bosons of an extended Higgs sector in b quark final states in proton-proton collisions at s = 13 TeV

    No full text
    A search for beyond-the-standard-model neutral Higgs bosons decaying to a pair of bottom quarks, and produced in association with at least one additional bottom quark, is performed with the CMS detector. The data were recorded in proton-proton collisions at a centre-of-mass energy of 13 TeV at the CERN LHC and correspond to an integrated luminosity of 36.7–126.9 fb−1, depending on the probed mass range. No signal above the standard model background expectation is observed. Upper limits on the production cross section times branching fraction are set for Higgs bosons in the mass range of 125–1800 GeV. The results are interpreted in benchmark scenarios of the minimal supersymmetric standard model, as well as suitable classes of two-Higgs-doublet models

    Measurement of inclusive and differential cross sections of single top quark production in association with a W boson in proton-proton collisions at s = 13.6 TeV

    No full text
    The first measurement of the inclusive and normalised differential cross sections of single top quark production in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13.6 TeV is presented. The data were recorded with the CMS detector at the LHC in 2022, and correspond to an integrated luminosity of 34.7 fb−1. The analysed events contain one muon and one electron in the final state. For the inclusive measurement, multivariate discriminants exploiting the kinematic properties of the events are used to separate the signal from the dominant top quark-antiquark production background. A cross section of 82.3±2.1stat−9.7+9.9syst±3.3lumi pb is obtained, consistent with the predictions of the standard model. A fiducial region is defined according to the detector acceptance to perform the differential measurements. The resulting differential distributions are unfolded to particle level and show good agreement with the predictions at next-to-leading order in perturbative quantum chromodynamics

    Identification of low-momentum muons in the CMS detector using multivariate techniques in proton-proton collisions at √s = 13.6 TeV

    No full text
    "Soft"muons with a transverse momentum below 10 GeV are featured in many processes studied by the CMS experiment, such as decays of heavy-flavor hadrons or rare tau lepton decays. Maximizing the selection efficiency for these muons, while simultaneously suppressing backgrounds from long-lived light-flavor hadron decays, is therefore important for the success of the CMS physics program. Multivariate techniques have been shown to deliver better muon identification performance than traditional selection techniques. To take full advantage of the large data set currently being collected during Run 3 of the CERN LHC, a new multivariate classifier based on a gradient-boosted decision tree has been developed. It offers a significantly improved separation of signal and background muons compared to a similar classifier used for the analysis of the Run 2 data. The performance of the new classifier is evaluated on a data set collected with the CMS detector in 2022 and 2023, corresponding to an integrated luminosity of 62 fb-

    Search for rare decays of the Z and Higgs bosons to a J/ψ or ψ(2S) meson and a photon in proton-proton collisions at s=13TeV

    No full text
    A search is presented for rare decays of the Image 1 and Higgs bosons to a photon and a Image 2 or a Image 3 meson, with the charmonium state subsequentially decaying to a pair of muons. The data set corresponds to an integrated luminosity of 123fb−1 of proton-proton collisions at a center-of-mass energy of 13 TeV collected with the CMS detector at the LHC. No evidence for branching fractions of these rare decay channels larger than predicted in the standard model is observed. Upper limits at 95% confidence level are set: Image 4, Image 5, Image 6, and Image 7. The ratio of the Higgs boson coupling modifiers Image 8 is constrained to be in the interval (−157,+199) at 95% confidence level. Assuming Image 9, this interval becomes (−166,+208)

    Measurement of multidifferential cross sections for dijet production in proton–proton collisions at s=13TeV

    No full text
    A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at s=13TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3fb-1. Jets are reconstructed with the anti-kT algorithm for distance parameters of R=0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity |y|max of the two jets with the highest transverse momenta pT and their invariant mass m1,2, and triple-differentially (3D) as a function of the rapidity separation y∗, the total boost yb, and either m1,2 or the average pT of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of αS(mZ)=0.1179±0.0019. © The Author(s) 2024

    Girth and groomed radius of jets recoiling against isolated photons in lead-lead and proton-proton collisions at sNN=5.02 TeV

    Get PDF
    This Letter presents the first measurements of the groomed jet radius Rg and the jet girth g in events with an isolated photon recoiling against a jet in lead-lead (PbPb) and proton-proton (pp) collisions at the LHC at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The observables Rg and g provide a quantitative measure of how narrow or broad a jet is. The analysis uses PbPb and pp data samples with integrated luminosities of 1.7 nb−1 and 301 pb−1, respectively, collected with the CMS experiment in 2018 and 2017. Events are required to have a photon with transverse momentum pTγ>100 GeV and at least one jet back-to-back in azimuth with respect to the photon and with transverse momentum pTjet such that pTjet/pTγ>0.4. The measured Rg and g distributions are unfolded to the particle level, which facilitates the comparison between the PbPb and pp results and with theoretical predictions. It is found that jets with pTjet/pTγ>0.8, i.e., those that closely balance the photon pTγ, are narrower in PbPb than in pp collisions. Relaxing the selection to include jets with pTjet/pTγ>0.4 reduces the narrowing of the angular structure of jets in PbPb relative to the pp reference. This shows that selection bias effects associated with jet energy loss play an important role in the interpretation of jet substructure measurements

    Observation of nuclear modification of energy-energy correlators inside jets in heavy ion collisions

    No full text
    Energy-energy correlators are constructed by averaging the number of charged particle pairs within jets, weighted by the product of their transverse momenta, as a function of the angular separation of the particles within a pair. They are sensitive to a multitude of perturbative and nonperturbative quantum chromodynamics phenomena in high-energy particle collisions. Using lead-lead data recorded with the CMS detector, energy-energy correlators inside high transverse momentum jets are measured in heavy ion collisions for the first time. The data are obtained at a nucleon-nucleon center-of-mass energy of 5.02 TeV and correspond to an integrated luminosity of 1.70nb−1. A similar analysis is done for proton-proton collisions at the same center-of-mass energy to establish a reference. The ratio of lead-lead to proton-proton energy-energy correlators reveals significant jet substructure modifications in the quark-gluon plasma. The results are compared to different models that incorporate either color coherence or medium response effects, where the two effects predict similar substructure modifications

    Search for the Higgs boson decays to a ρ0, ϕ, or K⁎0 meson and a photon in proton-proton collisions at s=13TeV

    No full text
    Three rare decay processes of the Higgs boson to a ρ(770)0, ϕ(1020), or K⁎(892)0 meson and a photon are searched for using s=13TeV proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138fb−1, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into ρ(770)0γ, ϕ(1020)γ, and K⁎(892)0γ are determined to be 3.7×10−4, 3.0×10−4, and 3.0×10−4, respectively. In case of the ρ(770)0γ and ϕ(1020)γ channels, these are the most stringent experimental limits to date
    corecore