701 research outputs found
C‐reactive protein level as a predictor of difficult emergency laparoscopic cholecystectomy
Background:
Studies focused on C‐reactive protein (CRP) as a marker of difficult laparoscopic cholecystectomy are limited to small case series. The aim of this study was to evaluate the association between preoperative CRP concentration and difficulty of laparoscopic cholecystectomy in patients admitted with a biliary emergency presentation.
Methods:
Patients with an emergency admission for biliary disease treated between 2012 and 2017 with a documented preoperative CRP level were analysed. Elective patients and those with other concurrent causes of increased CRP concentration were excluded. The intraoperative difficulty grade was based on the Nassar scale. Statistical analysis was conducted to determine the association of preoperative CRP level with difficulty grading, adjusted for the interval to surgery.
Results:
A total of 804 emergency patients were included. The mean preoperative peak CRP level was 64·7 mg/l for operative difficulty grade I, 69·6 mg/l for grade II, 98·2 mg/l for grade III, 217·5 mg/l for grade IV and 193·1 mg/l for grade V, indicating a significant association between CRP concentration and Nassar grade (P < 0·001). Receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0·78 (95 per cent c.i. 0·75 to 0·82), differentiating patients with grade I–III from those with grade IV–V operative difficulty. ROC curve analysis found a cut‐off CRP value of 90 mg/l, with 71·5 per cent sensitivity and 70·5 per cent specificity in predicting operative difficulty of grade IV or V. Logistic regression analysis found preoperative peak CRP level to be predictive of Nassar grade I–III versus grade IV–V operative difficulty, also when adjusted for timing of surgery (odds ratio 5·90, 95 per cent c.i. 2·80 to 12·50).
Conclusion:
Raised preoperative CRP levels are associated with greater operative difficulty based on Nassar scale grading
Disorder Induced Phases in Higher Spin Antiferromagnetic Heisenberg Chains
Extensive DMRG calculations for spin S=1/2 and S=3/2 disordered
antiferromagnetic Heisenberg chains show a rather distinct behavior in the two
cases. While at sufficiently strong disorder both systems are in a random
singlet phase, we show that weak disorder is an irrelevant perturbation for the
S=3/2 chain, contrary to what expected from a naive application of the Harris
criterion. The observed irrelevance is attributed to the presence of a new
correlation length due to enhanced end-to-end correlations. This phenomenon is
expected to occur for all half-integer S > 1/2 chains. A possible phase diagram
of the chain for generic S is also discussed.Comment: 6 Pages and 6 figures. Final version as publishe
The temperature-flow renormalization group and the competition between superconductivity and ferromagnetism
We derive a differential equation for the one-particle-irreducible vertex
functions of interacting fermions as a function of the temperature. Formally,
these equations correspond to a Wilsonian renormalization group scheme which
uses the temperature as an explicit scale parameter. Our novel method allows us
to analyze the competition between superconducting and various magnetic Fermi
surface instabilities in the one-loop approximation. In particular this
includes ferromagnetic fluctuations, which are difficult to treat on an equal
footing in conventional Wilsonian momentum space techniques. Applying the
scheme to the two-dimensional t-t' Hubbard model we investigate the RG flow of
the interactions at the van Hove filling with varying next-nearest neighbor
hopping t'. Starting at t'=0 we describe the evolution of the flow to strong
coupling from an antiferromagnetic nesting regime over a d-wave regime at
moderate t' to a ferromagnetic region at larger absolute values of t'. Upon
increasing the particle density in the latter regime the ferromagnetic
tendencies are cut off and the leading instability occurs in the triplet
superconducting pairing channel.Comment: 18 pages, 11 figure
Towards the prediction of antimicrobial efficacy for hydrogen bonded, self-associating amphiphiles
Herein, we report 50 structurally related supramolecular self-associating amphiphilic (SSA) salts and related compounds. These SSAs are shown to act as antimicrobial agents, active against model Gram-positive (Methicillin-Resistant Staphylococcus aureus) and/or Gram-negative (Escherichia coli) bacteria of clinical interest. Through a combination of solution state, gas phase, solid state and in silico measurements we determine 14 different physicochemical parameters for each of these 50 structurally related compounds. These parameter sets are then used to identify molecular structure – physicochemical property – antimicrobial activity relationships for our model Gram-negative and Gram-positive bacteria, while simultaneously providing insight towards the elucidation of SSA mode of antimicrobial action
Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity
The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp
scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx}
orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized
description of the in-plane electron correlations the superconducting order
parameter is found to be a orbital-singlet spin-triplet with two spatial
components. The spatial anisotropy is 7%. The different components of the order
parameter give rise to two-dimensional gapless fluctuations. The phase
transition is of third order. The temperature dependence of the pair density,
specific heat, NQR, Knight shift, and susceptibility are in agreement with
experimental results.Comment: 20 pages REVTEX, 3 figure
Low temperature electronic properties of Sr_2RuO_4 I: Microscopic model and normal state properties
Starting from the quasi one-dimensional kinetic energy of the d_{yz} and
d_{zx} bands we derive a bosonized description of the correlated electron
system in Sr_2RuO_4. At intermediate coupling the magnetic correlations have a
quasi one-dimensional component along the diagonals of the basal plane of the
tetragonal unit cell that accounts for the observed neutron scattering results.
Together with two-dimensional correlations the model consistently accounts for
the normal phase specific heat, cyclotron mass enhancement, static
susceptibility, and Wilson ratio and implies an anomalous high temperature
resistivity.Comment: 12 pages REVTEX, 6 figure
Magnetic fields in supernova remnants and pulsar-wind nebulae
We review the observations of supernova remnants (SNRs) and pulsar-wind
nebulae (PWNe) that give information on the strength and orientation of
magnetic fields. Radio polarimetry gives the degree of order of magnetic
fields, and the orientation of the ordered component. Many young shell
supernova remnants show evidence for synchrotron X-ray emission. The spatial
analysis of this emission suggests that magnetic fields are amplified by one to
two orders of magnitude in strong shocks. Detection of several remnants in TeV
gamma rays implies a lower limit on the magnetic-field strength (or a
measurement, if the emission process is inverse-Compton upscattering of cosmic
microwave background photons). Upper limits to GeV emission similarly provide
lower limits on magnetic-field strengths. In the historical shell remnants,
lower limits on B range from 25 to 1000 microGauss. Two remnants show
variability of synchrotron X-ray emission with a timescale of years. If this
timescale is the electron-acceleration or radiative loss timescale, magnetic
fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition
arguments and dynamical modeling can be used to infer magnetic-field strengths
anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably
higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field
geometries often suggest a toroidal structure around the pulsar, but this is
not universal. Viewing-angle effects undoubtedly play a role. MHD models of
radio emission in shell SNRs show that different orientations of upstream
magnetic field, and different assumptions about electron acceleration, predict
different radio morphology. In the remnant of SN 1006, such comparisons imply a
magnetic-field orientation connecting the bright limbs, with a non-negligible
gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording
change in Abstrac
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
- …