43 research outputs found
Distributed Relay Protocol for Probabilistic Information-Theoretic Security in a Randomly-Compromised Network
We introduce a simple, practical approach with probabilistic
information-theoretic security to mitigate one of quantum key distribution's
major limitations: the short maximum transmission distance (~200 km) possible
with present day technology. Our scheme uses classical secret sharing
techniques to allow secure transmission over long distances through a network
containing randomly-distributed compromised nodes. The protocol provides
arbitrarily high confidence in the security of the protocol, with modest
scaling of resource costs with improvement of the security parameter. Although
some types of failure are undetectable, users can take preemptive measures to
make the probability of such failures arbitrarily small.Comment: 12 pages, 2 figures; added proof of verification sub-protocol, minor
correction
Entanglement Dynamics in 1D Quantum Cellular Automata
Several proposed schemes for the physical realization of a quantum computer
consist of qubits arranged in a cellular array. In the quantum circuit model of
quantum computation, an often complex series of two-qubit gate operations is
required between arbitrarily distant pairs of lattice qubits. An alternative
model of quantum computation based on quantum cellular automata (QCA) requires
only homogeneous local interactions that can be implemented in parallel. This
would be a huge simplification in an actual experiment. We find some minimal
physical requirements for the construction of unitary QCA in a 1 dimensional
Ising spin chain and demonstrate optimal pulse sequences for information
transport and entanglement distribution. We also introduce the theory of
non-unitary QCA and show by example that non-unitary rules can generate
environment assisted entanglement.Comment: 12 pages, 8 figures, submitted to Physical Review
Localization and diffusion in Ising-type quantum networks
We investigate the effect of phase randomness in Ising-type quantum networks.
These networks model a large class of physical systems. They describe micro-
and nanostructures or arrays of optical elements such as beam splitters
(interferometers) or parameteric amplifiers. Most of these stuctures are
promising candidates for quantum information processing networks. We
demonstrate that such systems exhibit two very distinct types of behaviour. For
certain network configurations (parameters), they show quantum localization
similar to Anderson localization whereas classical stochastic behaviour is
observed in other cases. We relate these findings to the standard theory of
quantum localization.Comment: 12 page
The Case for Quantum Key Distribution
Quantum key distribution (QKD) promises secure key agreement by using quantum
mechanical systems. We argue that QKD will be an important part of future
cryptographic infrastructures. It can provide long-term confidentiality for
encrypted information without reliance on computational assumptions. Although
QKD still requires authentication to prevent man-in-the-middle attacks, it can
make use of either information-theoretically secure symmetric key
authentication or computationally secure public key authentication: even when
using public key authentication, we argue that QKD still offers stronger
security than classical key agreement.Comment: 12 pages, 1 figure; to appear in proceedings of QuantumComm 2009
Workshop on Quantum and Classical Information Security; version 2 minor
content revision
Efficient scheme for one-way quantum computing in thermal cavities
We propose a practical scheme for one-way quantum computing based on
efficient generation of 2D cluster state in thermal cavities. We achieve a
controlled-phase gate that is neither sensitive to cavity decay nor to thermal
field by adding a strong classical field to the two-level atoms. We show that a
2D cluster state can be generated directly by making every two atoms collide in
an array of cavities, with numerically calculated parameters and appropriate
operation sequence that can be easily achieved in practical Cavity QED
experiments. Based on a generated cluster state in Box configuration,
we then implement Grover's search algorithm for four database elements in a
very simple way as an example of one-way quantum computing.Comment: 6 pages, 3 figure
Topological order in 1D Cluster state protected by symmetry
We demonstrate how to construct the Z2*Z2 global symmetry which protects the
ground state degeneracy of cluster states for open boundary conditions. Such a
degeneracy ultimately arises because the set of stabilizers do not span a
complete set of integrals of motion of the cluster state Hamiltonian for open
boundary conditions. By applying control phase transformations, our
construction makes the stabilizers into the Pauli operators spanning the qubit
Hilbert space from which the degeneracy comes.Comment: 1 figure, To be published in Quantum Information Processin
Valence Bond States: Link models
An isotropic anti-ferromagnetic quantum state on a square lattice is
characterized by symmetry arguments only. By construction, this quantum state
is the result of an underlying valence bond structure without breaking any
symmetry in the lattice or spin spaces. A detailed analysis of the correlations
of the quantum state is given (using a mapping to a 2D classical statistical
model and methods in field theory like mapping to the non-linear sigma model or
bosonization techniques) as well as the results of numerical treatments
(regarding exact diagonalization and variational methods). Finally, the
physical relevance of the model is motivated. A comparison of the model to
known anti-ferromagnetic Mott-Hubbard insulators is given by means of the
two-point equal-time correlation function obtained i) numerically from the
suggested state and ii) experimentally from neutron scattering on cuprates in
the anti-ferromagnetic insulator phase.Comment: 20 pages, 15 figures; added references, corrected some typos, new
sections. Published versio
Resonance fluorescence of a trapped three-level atom
We investigate theoretically the spectrum of resonance fluorescence of a
harmonically trapped atom, whose internal transitions are --shaped and
driven at two-photon resonance by a pair of lasers, which cool the
center--of--mass motion. For this configuration, photons are scattered only due
to the mechanical effects of the quantum interaction between light and atom. We
study the spectrum of emission in the final stage of laser--cooling, when the
atomic center-of-mass dynamics is quantum mechanical and the size of the wave
packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use
the spectral decomposition of the Liouville operator of the master equation for
the atomic density matrix and apply second order perturbation theory. We find
that the spectrum of resonance fluorescence is composed by two narrow sidebands
-- the Stokes and anti-Stokes components of the scattered light -- while all
other signals are in general orders of magnitude smaller. For very low
temperatures, however, the Mollow--type inelastic component of the spectrum
becomes visible. This exhibits novel features which allow further insight into
the quantum dynamics of the system. We provide a physical model that interprets
our results and discuss how one can recover temperature and cooling rate of the
atom from the spectrum. The behaviour of the considered system is compared with
the resonance fluorescence of a trapped atom whose internal transition consists
of two-levels.Comment: 11 pages, 4 Figure
Quantum circuits for spin and flavor degrees of freedom of quarks forming nucleons
We discuss the quantum-circuit realization of the state of a nucleon in the
scope of simple symmetry groups. Explicit algorithms are presented for the
preparation of the state of a neutron or a proton as resulting from the
composition of their quark constituents. We estimate the computational
resources required for such a simulation and design a photonic network for its
implementation. Moreover, we highlight that current work on three-body
interactions in lattices of interacting qubits, combined with the
measurement-based paradigm for quantum information processing, may also be
suitable for the implementation of these nucleonic spin states.Comment: 5 pages, 2 figures, RevTeX4; Accepted for publication in Quantum
Information Processin
Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state
We present a protocol for performing entanglement swapping with intense
pulsed beams. In a first step, the generation of amplitude correlations between
two systems that have never interacted directly is demonstrated. This is
verified in direct detection with electronic modulation of the detected
photocurrents. The measured correlations are better than expected from a
classical reconstruction scheme. In the entanglement swapping process, a
four--partite entangled state is generated. We prove experimentally that the
amplitudes of the four optical modes are quantum correlated 3 dB below shot
noise, which is due to the potential four--party entanglement.Comment: 9 pages, 10 figures, update of references 9 and 10; minor
inconsistency in notation removed; format for units in the figures change